Historical analysis to identify malicious activity


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Joseph Ward , Andrew Hobson

ABSTRACT

Systems and methods may use historical analysis to identify malicious activity. A discovery/recovery system may comprise a processor in communication with a network and in communication with a database. The discovery/recovery system may gather filtered historical network data associated with an asset associated with the network. The discovery/recovery system may analyze the filtered historical network data to determine whether a subset of the filtered historical network data is associated with a malware infection of the asset. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3001", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Joseph Ward", 
        "type": "Person"
      }, 
      {
        "name": "Andrew Hobson", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-4048(90)90072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001658589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-005-0466-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005110454", 
          "https://doi.org/10.1007/s10994-005-0466-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(02)00169-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014676096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1610252.1610269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020840102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jcs-2002-101-204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023300023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2089125.2089126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029161840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1242489.1242499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032733331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/357830.357849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038596767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(97)00240-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047421142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jcs-2002-101-205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049135134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/41.7.444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059479190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/32.372146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061153929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msecp.2003.1219079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061421828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2006.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2007.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tdsc.2004.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061585056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnet.2002.803905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijsn.2007.012824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067492170"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Systems and methods may use historical analysis to identify malicious activity. A discovery/recovery system may comprise a processor in communication with a network and in communication with a database. The discovery/recovery system may gather filtered historical network data associated with an asset associated with the network. The discovery/recovery system may analyze the filtered historical network data to determine whether a subset of the filtered historical network data is associated with a malware infection of the asset.

", "id": "sg:patent.US-9680861-B2", "keywords": [ "historical analysis", "malicious activity", "method", "processor", "communication", "network", "database", "network data", "asset", "subset", "infection" ], "name": "Historical analysis to identify malicious activity", "sameAs": [ "https://app.dimensions.ai/details/patent/US-9680861-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:35", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b670b59c.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9680861-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9680861-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9680861-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9680861-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      13 PREDICATES      42 URIs      18 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9680861-B2 schema:about anzsrc-for:3001
2 schema:author Nb55e0b1108204353828cb3c8c2bea3d3
3 schema:citation sg:pub.10.1007/bf00058655
4 sg:pub.10.1007/s10994-005-0466-3
5 https://doi.org/10.1016/0167-4048(90)90072-2
6 https://doi.org/10.1016/s0031-3203(02)00169-3
7 https://doi.org/10.1016/s0304-3975(97)00240-5
8 https://doi.org/10.1093/comjnl/41.7.444
9 https://doi.org/10.1109/32.372146
10 https://doi.org/10.1109/msecp.2003.1219079
11 https://doi.org/10.1109/msp.2006.161
12 https://doi.org/10.1109/msp.2007.45
13 https://doi.org/10.1109/tdsc.2004.21
14 https://doi.org/10.1109/tnet.2002.803905
15 https://doi.org/10.1145/1242489.1242499
16 https://doi.org/10.1145/1610252.1610269
17 https://doi.org/10.1145/2089125.2089126
18 https://doi.org/10.1145/357830.357849
19 https://doi.org/10.1504/ijsn.2007.012824
20 https://doi.org/10.3233/jcs-2002-101-204
21 https://doi.org/10.3233/jcs-2002-101-205
22 schema:description <p id="p-0001" num="0000">Systems and methods may use historical analysis to identify malicious activity. A discovery/recovery system may comprise a processor in communication with a network and in communication with a database. The discovery/recovery system may gather filtered historical network data associated with an asset associated with the network. The discovery/recovery system may analyze the filtered historical network data to determine whether a subset of the filtered historical network data is associated with a malware infection of the asset.</p>
23 schema:keywords asset
24 communication
25 database
26 historical analysis
27 infection
28 malicious activity
29 method
30 network
31 network data
32 processor
33 subset
34 schema:name Historical analysis to identify malicious activity
35 schema:sameAs https://app.dimensions.ai/details/patent/US-9680861-B2
36 schema:sdDatePublished 2019-03-07T15:35
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N60eb2431c293498d929d06145c558c52
39 sgo:license sg:explorer/license/
40 sgo:sdDataset patents
41 rdf:type sgo:Patent
42 N60eb2431c293498d929d06145c558c52 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nb55e0b1108204353828cb3c8c2bea3d3 rdf:first Nff121cf9b3154b62b9ed903637b8b499
45 rdf:rest Nde0a7ecf3c8d4bbc85e96ff98065ffbe
46 Nd752d2cc2194414a90a01d9c15a4aa04 schema:name Andrew Hobson
47 rdf:type schema:Person
48 Nde0a7ecf3c8d4bbc85e96ff98065ffbe rdf:first Nd752d2cc2194414a90a01d9c15a4aa04
49 rdf:rest rdf:nil
50 Nff121cf9b3154b62b9ed903637b8b499 schema:name Joseph Ward
51 rdf:type schema:Person
52 anzsrc-for:3001 schema:inDefinedTermSet anzsrc-for:
53 rdf:type schema:DefinedTerm
54 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
55 https://doi.org/10.1007/bf00058655
56 rdf:type schema:CreativeWork
57 sg:pub.10.1007/s10994-005-0466-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005110454
58 https://doi.org/10.1007/s10994-005-0466-3
59 rdf:type schema:CreativeWork
60 https://doi.org/10.1016/0167-4048(90)90072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001658589
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1016/s0031-3203(02)00169-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014676096
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1016/s0304-3975(97)00240-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047421142
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1093/comjnl/41.7.444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059479190
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1109/32.372146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061153929
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1109/msecp.2003.1219079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061421828
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1109/msp.2006.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422560
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1109/msp.2007.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422882
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1109/tdsc.2004.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061585056
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1109/tnet.2002.803905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714320
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1145/1242489.1242499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032733331
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1145/1610252.1610269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020840102
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1145/2089125.2089126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029161840
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1145/357830.357849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038596767
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1504/ijsn.2007.012824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067492170
89 rdf:type schema:CreativeWork
90 https://doi.org/10.3233/jcs-2002-101-204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023300023
91 rdf:type schema:CreativeWork
92 https://doi.org/10.3233/jcs-2002-101-205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049135134
93 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...