Dynamic online energy forecasting


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Lars Dannecker , Philipp Roesch

ABSTRACT

Examples of dynamic online energy forecasting are provided herein. An energy forecast request is received. An initial energy forecast is calculated in response to the request. One or more of a plurality of energy forecast model instances are selected as candidate forecast model instances. At least one of the candidate instances are transformed into an improved forecast model instance having greater accuracy than the candidate forecast model instance. The transformation is accomplished by determining alternative values for at least some parameters of an energy forecast model of the candidate forecast model instance. An improved energy forecast having a greater accuracy than the initial forecast can then be calculated using the improved forecast model instance. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Lars Dannecker", 
        "type": "Person"
      }, 
      {
        "name": "Philipp Roesch", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004502561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2011.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014021033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01589116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022481421", 
          "https://doi.org/10.1007/bf01589116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2006.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025380230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2070(01)00110-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029470897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-131x(200009)19:5<457::aid-for761>3.0.co;2-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048247155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-2070(97)00015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048556784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.220.4598.671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062526985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0916069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/253262.253291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063163098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/1687553.1687576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Examples of dynamic online energy forecasting are provided herein. An energy forecast request is received. An initial energy forecast is calculated in response to the request. One or more of a plurality of energy forecast model instances are selected as candidate forecast model instances. At least one of the candidate instances are transformed into an improved forecast model instance having greater accuracy than the candidate forecast model instance. The transformation is accomplished by determining alternative values for at least some parameters of an energy forecast model of the candidate forecast model instance. An improved energy forecast having a greater accuracy than the initial forecast can then be calculated using the improved forecast model instance.

", "id": "sg:patent.US-9672304-B2", "keywords": [ "forecasting", "forecast", "request", "plurality", "forecast model", "instance", "improved forecast", "great accuracy", "transformation", "alternative", "parameter" ], "name": "Dynamic online energy forecasting", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.19008.30", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9672304-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:36", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_c290c18d.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9672304-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9672304-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9672304-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9672304-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

70 TRIPLES      14 PREDICATES      35 URIs      18 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9672304-B2 schema:about anzsrc-for:2746
2 schema:author N6dd2e30e62b040a09469f074d08f6dc3
3 schema:citation sg:pub.10.1007/bf01589116
4 https://doi.org/10.1002/1099-131x(200009)19:5<457::aid-for761>3.0.co;2-6
5 https://doi.org/10.1016/j.csda.2011.03.006
6 https://doi.org/10.1016/j.ejor.2009.10.003
7 https://doi.org/10.1016/j.ijforecast.2006.01.001
8 https://doi.org/10.1016/s0169-2070(01)00110-8
9 https://doi.org/10.1016/s0169-2070(97)00015-0
10 https://doi.org/10.1126/science.220.4598.671
11 https://doi.org/10.1137/0916069
12 https://doi.org/10.1145/253262.253291
13 https://doi.org/10.14778/1687553.1687576
14 schema:description <p id="p-0001" num="0000">Examples of dynamic online energy forecasting are provided herein. An energy forecast request is received. An initial energy forecast is calculated in response to the request. One or more of a plurality of energy forecast model instances are selected as candidate forecast model instances. At least one of the candidate instances are transformed into an improved forecast model instance having greater accuracy than the candidate forecast model instance. The transformation is accomplished by determining alternative values for at least some parameters of an energy forecast model of the candidate forecast model instance. An improved energy forecast having a greater accuracy than the initial forecast can then be calculated using the improved forecast model instance.</p>
15 schema:keywords alternative
16 forecast
17 forecast model
18 forecasting
19 great accuracy
20 improved forecast
21 instance
22 parameter
23 plurality
24 request
25 transformation
26 schema:name Dynamic online energy forecasting
27 schema:recipient https://www.grid.ac/institutes/grid.19008.30
28 schema:sameAs https://app.dimensions.ai/details/patent/US-9672304-B2
29 schema:sdDatePublished 2019-03-07T15:36
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N07398a4f476547bf9a132ddf7595f08a
32 sgo:license sg:explorer/license/
33 sgo:sdDataset patents
34 rdf:type sgo:Patent
35 N07398a4f476547bf9a132ddf7595f08a schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N4696546afda34012b6ea0cb24c62dea6 schema:name Lars Dannecker
38 rdf:type schema:Person
39 N6dd2e30e62b040a09469f074d08f6dc3 rdf:first N4696546afda34012b6ea0cb24c62dea6
40 rdf:rest Nc3f1769431984bc8a7aa2c105d60f189
41 N8c2d91fa5c774021901dd811aea344c6 schema:name Philipp Roesch
42 rdf:type schema:Person
43 Nc3f1769431984bc8a7aa2c105d60f189 rdf:first N8c2d91fa5c774021901dd811aea344c6
44 rdf:rest rdf:nil
45 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
46 rdf:type schema:DefinedTerm
47 sg:pub.10.1007/bf01589116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022481421
48 https://doi.org/10.1007/bf01589116
49 rdf:type schema:CreativeWork
50 https://doi.org/10.1002/1099-131x(200009)19:5<457::aid-for761>3.0.co;2-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048247155
51 rdf:type schema:CreativeWork
52 https://doi.org/10.1016/j.csda.2011.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014021033
53 rdf:type schema:CreativeWork
54 https://doi.org/10.1016/j.ejor.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004502561
55 rdf:type schema:CreativeWork
56 https://doi.org/10.1016/j.ijforecast.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025380230
57 rdf:type schema:CreativeWork
58 https://doi.org/10.1016/s0169-2070(01)00110-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029470897
59 rdf:type schema:CreativeWork
60 https://doi.org/10.1016/s0169-2070(97)00015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048556784
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1126/science.220.4598.671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062526985
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1137/0916069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857767
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1145/253262.253291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063163098
67 rdf:type schema:CreativeWork
68 https://doi.org/10.14778/1687553.1687576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367498
69 rdf:type schema:CreativeWork
70 https://www.grid.ac/institutes/grid.19008.30 schema:Organization
 




Preview window. Press ESC to close (or click here)


...