High throughput screening of populations carrying naturally occurring mutations


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Michael Josephus Theresia van Eijk , Adrianus Johannes van Tunen

ABSTRACT

Efficient methods are disclosed for the high throughput identification of mutations in genes in members of mutagenized populations. The methods comprise DNA isolation, pooling, amplification, creation of libraries, high throughput sequencing of libraries, preferably by sequencing-by-synthesis technologies, identification of mutations and identification of the member of the population carrying the mutation and identification of the mutation. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2620", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Michael Josephus Theresia van Eijk", 
        "type": "Person"
      }, 
      {
        "name": "Adrianus Johannes van Tunen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2004.02088.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001178142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.102.017855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002448690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2002.01481.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005337900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2002.01499.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005854551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-002-0722-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009560933", 
          "https://doi.org/10.1007/s00439-002-0722-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-002-0722-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009560933", 
          "https://doi.org/10.1007/s00439-002-0722-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016134561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.126.2.480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020427250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.123.2.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023566091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.103.025015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026344582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2001.01084.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032806855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2003.3211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035541412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409339102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035663961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.16.7879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038360632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.10292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039334432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.10078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040927563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-005-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043357200", 
          "https://doi.org/10.1007/s00438-005-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3353714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062609115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Efficient methods are disclosed for the high throughput identification of mutations in genes in members of mutagenized populations. The methods comprise DNA isolation, pooling, amplification, creation of libraries, high throughput sequencing of libraries, preferably by sequencing-by-synthesis technologies, identification of mutations and identification of the member of the population carrying the mutation and identification of the mutation.

", "id": "sg:patent.US-9670542-B2", "keywords": [ "high throughput screening", "population", "mutation", "efficient method", "high-throughput identification", "gene", "method", "DNA isolation", "amplification", "creation", "library", "high-throughput sequencing", "sequencing-by-synthesis" ], "name": "High throughput screening of populations carrying naturally occurring mutations", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.425600.5", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9670542-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:36", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_c290c18d.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9670542-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9670542-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9670542-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9670542-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      14 PREDICATES      46 URIs      20 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9670542-B2 schema:about anzsrc-for:2620
2 schema:author Nb5f3feaa04df469b856e0da386a2eb38
3 schema:citation sg:pub.10.1007/s00438-005-0003-x
4 sg:pub.10.1007/s00439-002-0722-6
5 sg:pub.10.1038/nature03959
6 https://doi.org/10.1002/humu.10078
7 https://doi.org/10.1002/humu.10292
8 https://doi.org/10.1006/jtbi.2003.3211
9 https://doi.org/10.1046/j.1365-313x.2001.01084.x
10 https://doi.org/10.1046/j.1365-313x.2002.01481.x
11 https://doi.org/10.1046/j.1365-313x.2002.01499.x
12 https://doi.org/10.1073/pnas.0409339102
13 https://doi.org/10.1073/pnas.90.16.7879
14 https://doi.org/10.1086/302894
15 https://doi.org/10.1093/nar/gkg375
16 https://doi.org/10.1104/pp.102.017855
17 https://doi.org/10.1104/pp.103.025015
18 https://doi.org/10.1104/pp.123.2.439
19 https://doi.org/10.1104/pp.126.2.480
20 https://doi.org/10.1111/j.1365-313x.2004.02088.x
21 https://doi.org/10.1126/science.1117389
22 https://doi.org/10.1126/science.3353714
23 schema:description <p id="p-0001" num="0000">Efficient methods are disclosed for the high throughput identification of mutations in genes in members of mutagenized populations. The methods comprise DNA isolation, pooling, amplification, creation of libraries, high throughput sequencing of libraries, preferably by sequencing-by-synthesis technologies, identification of mutations and identification of the member of the population carrying the mutation and identification of the mutation.</p>
24 schema:keywords DNA isolation
25 amplification
26 creation
27 efficient method
28 gene
29 high throughput screening
30 high-throughput identification
31 high-throughput sequencing
32 library
33 method
34 mutation
35 population
36 sequencing-by-synthesis
37 schema:name High throughput screening of populations carrying naturally occurring mutations
38 schema:recipient https://www.grid.ac/institutes/grid.425600.5
39 schema:sameAs https://app.dimensions.ai/details/patent/US-9670542-B2
40 schema:sdDatePublished 2019-03-07T15:36
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N3d082115ab024c04bfc3161772e6e48f
43 sgo:license sg:explorer/license/
44 sgo:sdDataset patents
45 rdf:type sgo:Patent
46 N001033ec5e11455b8b2c6c187d5e5046 schema:name Adrianus Johannes van Tunen
47 rdf:type schema:Person
48 N285f4da2a82148b7a94da43e14f55e3f rdf:first N001033ec5e11455b8b2c6c187d5e5046
49 rdf:rest rdf:nil
50 N3d082115ab024c04bfc3161772e6e48f schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N7892e5b9d43f438eb8afc99b6bc94b43 schema:name Michael Josephus Theresia van Eijk
53 rdf:type schema:Person
54 Nb5f3feaa04df469b856e0da386a2eb38 rdf:first N7892e5b9d43f438eb8afc99b6bc94b43
55 rdf:rest N285f4da2a82148b7a94da43e14f55e3f
56 anzsrc-for:2620 schema:inDefinedTermSet anzsrc-for:
57 rdf:type schema:DefinedTerm
58 sg:pub.10.1007/s00438-005-0003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043357200
59 https://doi.org/10.1007/s00438-005-0003-x
60 rdf:type schema:CreativeWork
61 sg:pub.10.1007/s00439-002-0722-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009560933
62 https://doi.org/10.1007/s00439-002-0722-6
63 rdf:type schema:CreativeWork
64 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
65 https://doi.org/10.1038/nature03959
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1002/humu.10078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040927563
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1002/humu.10292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039334432
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1006/jtbi.2003.3211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035541412
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1046/j.1365-313x.2001.01084.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032806855
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1046/j.1365-313x.2002.01481.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005337900
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1046/j.1365-313x.2002.01499.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005854551
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1073/pnas.0409339102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035663961
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1073/pnas.90.16.7879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038360632
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1086/302894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610447
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1093/nar/gkg375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016134561
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1104/pp.102.017855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002448690
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1104/pp.103.025015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026344582
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1104/pp.123.2.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023566091
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1104/pp.126.2.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020427250
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1111/j.1365-313x.2004.02088.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001178142
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1126/science.3353714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062609115
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.425600.5 schema:Organization
 




Preview window. Press ESC to close (or click here)


...