Microfluidic devices and methods of fabrication


Ontology type: sgo:Patent     


Patent Info

DATE

2017-05-23T00:00

AUTHORS

John T. Fourkas , Christopher N. LaFratta

ABSTRACT

The present invention relates to microfluidic devices that comprise a 3-D microfluidic network of microchannels of arbitrary complexity and to a method for fabricating such devices. In particular, the invention relates to a method of forming microfluidic devices having 3-D microfluidic networks that contain open or closed loop microchannels using a single-step molding process without the need for layer-by-layer fabrication, and to the resultant microfluidic devices. The networks of such microfluidic devices may comprise one or more microchannel circuits which may be discrete or interconnected. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2953", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "John T. Fourkas", 
        "type": "Person"
      }, 
      {
        "name": "Christopher N. LaFratta", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mejo.2003.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010576235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025228833", 
          "https://doi.org/10.1038/17989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025228833", 
          "https://doi.org/10.1038/17989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0603247103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027084215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35089130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938448", 
          "https://doi.org/10.1038/35089130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35089130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938448", 
          "https://doi.org/10.1038/35089130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030076o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046771231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr030076o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046771231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5463.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053301497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac069363t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054999024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac069363t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054999024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0256007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055409719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0256007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055409719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja991990v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055872424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja991990v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055872424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp048525r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056058783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp048525r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056058783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma991042e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056210197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma991042e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056210197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ecej:19990603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056748716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1728296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057794798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15321790500304163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058399739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15321790500304163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058399739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jlt.2003.809564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061282198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.20.000948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065160347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.22.000132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.23.001745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.28.000301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065220828"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-23T00:00", 
    "description": "

The present invention relates to microfluidic devices that comprise a 3-D microfluidic network of microchannels of arbitrary complexity and to a method for fabricating such devices. In particular, the invention relates to a method of forming microfluidic devices having 3-D microfluidic networks that contain open or closed loop microchannels using a single-step molding process without the need for layer-by-layer fabrication, and to the resultant microfluidic devices. The networks of such microfluidic devices may comprise one or more microchannel circuits which may be discrete or interconnected.

", "id": "sg:patent.US-9656414-B2", "keywords": [ "Microfluidic Analytical Technique", "method", "fabrication", "invention", "microfluidic network", "microchannels", "arbitrary complexity", "fabricating", "Equipment and Supply", "molding process", "layer-by-layer", "microfluidics device", "network" ], "name": "Microfluidic devices and methods of fabrication", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.164295.d", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9656414-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:20", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01466.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9656414-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9656414-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9656414-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9656414-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      15 PREDICATES      46 URIs      21 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9656414-B2 schema:about anzsrc-for:2953
2 schema:author Nd00e3e678a46401792a07872f109a0c6
3 schema:citation sg:pub.10.1038/17989
4 sg:pub.10.1038/35089130
5 https://doi.org/10.1016/j.mejo.2003.10.003
6 https://doi.org/10.1021/ac069363t
7 https://doi.org/10.1021/cm0256007
8 https://doi.org/10.1021/cr030076o
9 https://doi.org/10.1021/ja991990v
10 https://doi.org/10.1021/jp048525r
11 https://doi.org/10.1021/ma991042e
12 https://doi.org/10.1049/ecej:19990603
13 https://doi.org/10.1063/1.1728296
14 https://doi.org/10.1073/pnas.0603247103
15 https://doi.org/10.1080/15321790500304163
16 https://doi.org/10.1109/jlt.2003.809564
17 https://doi.org/10.1126/science.288.5463.113
18 https://doi.org/10.1364/josaa.20.000948
19 https://doi.org/10.1364/ol.22.000132
20 https://doi.org/10.1364/ol.23.001745
21 https://doi.org/10.1364/ol.28.000301
22 schema:datePublished 2017-05-23T00:00
23 schema:description <p id="p-0001" num="0000">The present invention relates to microfluidic devices that comprise a 3-D microfluidic network of microchannels of arbitrary complexity and to a method for fabricating such devices. In particular, the invention relates to a method of forming microfluidic devices having 3-D microfluidic networks that contain open or closed loop microchannels using a single-step molding process without the need for layer-by-layer fabrication, and to the resultant microfluidic devices. The networks of such microfluidic devices may comprise one or more microchannel circuits which may be discrete or interconnected.</p>
24 schema:keywords Equipment and Supply
25 Microfluidic Analytical Technique
26 arbitrary complexity
27 fabricating
28 fabrication
29 invention
30 layer-by-layer
31 method
32 microchannels
33 microfluidic network
34 microfluidics device
35 molding process
36 network
37 schema:name Microfluidic devices and methods of fabrication
38 schema:recipient https://www.grid.ac/institutes/grid.164295.d
39 schema:sameAs https://app.dimensions.ai/details/patent/US-9656414-B2
40 schema:sdDatePublished 2019-04-18T10:20
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nc0701131655c4d09a24a5d13cf22e0fc
43 sgo:license sg:explorer/license/
44 sgo:sdDataset patents
45 rdf:type sgo:Patent
46 N144922adcc4c4860bab0874e1b1cd9f0 rdf:first N34c20e9a0d6047aa97e65c4b9ab0f404
47 rdf:rest rdf:nil
48 N34c20e9a0d6047aa97e65c4b9ab0f404 schema:name Christopher N. LaFratta
49 rdf:type schema:Person
50 Nc0701131655c4d09a24a5d13cf22e0fc schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nd00e3e678a46401792a07872f109a0c6 rdf:first Nf5b2422834ea4da68cb84f1abac8191e
53 rdf:rest N144922adcc4c4860bab0874e1b1cd9f0
54 Nf5b2422834ea4da68cb84f1abac8191e schema:name John T. Fourkas
55 rdf:type schema:Person
56 anzsrc-for:2953 schema:inDefinedTermSet anzsrc-for:
57 rdf:type schema:DefinedTerm
58 sg:pub.10.1038/17989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025228833
59 https://doi.org/10.1038/17989
60 rdf:type schema:CreativeWork
61 sg:pub.10.1038/35089130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041938448
62 https://doi.org/10.1038/35089130
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1016/j.mejo.2003.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010576235
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1021/ac069363t schema:sameAs https://app.dimensions.ai/details/publication/pub.1054999024
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1021/cm0256007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055409719
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1021/cr030076o schema:sameAs https://app.dimensions.ai/details/publication/pub.1046771231
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1021/ja991990v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055872424
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1021/jp048525r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056058783
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1021/ma991042e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056210197
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1049/ecej:19990603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056748716
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1063/1.1728296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057794798
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1073/pnas.0603247103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027084215
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1080/15321790500304163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058399739
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/jlt.2003.809564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061282198
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1126/science.288.5463.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053301497
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1364/josaa.20.000948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065160347
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1364/ol.22.000132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217176
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1364/ol.23.001745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218290
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1364/ol.28.000301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220828
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.164295.d schema:Organization
 




Preview window. Press ESC to close (or click here)


...