Isosorbide-derived epoxy resins and methods of making same


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Willis Hammond , Anthony East , Michael Jaffe , Xianhong Feng

ABSTRACT

Isosorbide-derived epoxies and methods of making same are disclosed. Isosorbide and its isomers are attached to glycidyl ether to make crosslinkable epoxy resin monomers. Adding the hydrophobic functional group into the backbone of isosorbide epoxy or adjusting the amount and type of crosslinker is operable to modify the mechanical properties and water uptake ratio (from <1 wt % to >50 wt %) of the isosorbide-derived epoxies for different uses. High water uptake epoxies with controllable biodegradation rate are suitable for drug delivery systems or extracellular matrices for biomedical applications, while low water uptake epoxies with strong mechanical properties may be used for can coatings, bone cements and other industrial additives and adhesives. More... »

Related SciGraph Publications

  • 2012-09. Thermal analysis characterization of isosorbide-containing thermosets in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2004-12. Industrial bioconversion of renewable resources as an alternative to conventional chemistry in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Willis Hammond", 
            "type": "Person"
          }, 
          {
            "name": "Anthony East", 
            "type": "Person"
          }, 
          {
            "name": "Michael Jaffe", 
            "type": "Person"
          }, 
          {
            "name": "Xianhong Feng", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00253-004-1733-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000433309", 
              "https://doi.org/10.1007/s00253-004-1733-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bk-1994-0575.ch001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002824355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pi.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002869155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-6535(97)10133-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004499218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-4020(00)00539-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006854589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.progpolymsci.2009.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007089260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1097-4636(2001)58:2<209::aid-jbm1009>3.0.co;2-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014629342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymer.2011.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032108585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-012-2581-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034577899", 
              "https://doi.org/10.1007/s10973-012-2581-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-6535(00)00079-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034990497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pat.1859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039234247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01496390500333160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042475479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046303596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-4039(00)00416-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050172689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef060097w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055476486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01594a055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055810657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15321799708009650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058399931"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    Isosorbide-derived epoxies and methods of making same are disclosed. Isosorbide and its isomers are attached to glycidyl ether to make crosslinkable epoxy resin monomers. Adding the hydrophobic functional group into the backbone of isosorbide epoxy or adjusting the amount and type of crosslinker is operable to modify the mechanical properties and water uptake ratio (from <1 wt % to >50 wt %) of the isosorbide-derived epoxies for different uses. High water uptake epoxies with controllable biodegradation rate are suitable for drug delivery systems or extracellular matrices for biomedical applications, while low water uptake epoxies with strong mechanical properties may be used for can coatings, bone cements and other industrial additives and adhesives.

    ", "id": "sg:patent.US-9605108-B2", "keywords": [ "epoxy resin", "method", "epoxy", "isomer", "ether", "functional group", "backbone", "crosslinkers", "mechanical property", "water uptake", "WT", "different us", "biodegradation rate", "drug delivery system", "extracellular matrix", "biomedical application", "coating", "bone cement", "additive", "adhesive" ], "name": "Isosorbide-derived epoxy resins and methods of making same", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.260896.3", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9605108-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:34", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b65d5aab.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9605108-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9605108-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9605108-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9605108-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      14 PREDICATES      50 URIs      27 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-9605108-B2 schema:about anzsrc-for:2921
    2 schema:author N6649bfb50b47438d9065ca12c233174c
    3 schema:citation sg:pub.10.1007/s00253-004-1733-0
    4 sg:pub.10.1007/s10973-012-2581-2
    5 https://doi.org/10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w
    6 https://doi.org/10.1002/1097-4636(2001)58:2<209::aid-jbm1009>3.0.co;2-7
    7 https://doi.org/10.1002/pat.1859
    8 https://doi.org/10.1002/pi.2010
    9 https://doi.org/10.1016/j.polymer.2011.06.001
    10 https://doi.org/10.1016/j.progpolymsci.2009.10.001
    11 https://doi.org/10.1016/s0040-4020(00)00539-1
    12 https://doi.org/10.1016/s0040-4039(00)00416-0
    13 https://doi.org/10.1016/s0045-6535(00)00079-5
    14 https://doi.org/10.1016/s0045-6535(97)10133-3
    15 https://doi.org/10.1021/bk-1994-0575.ch001
    16 https://doi.org/10.1021/ef060097w
    17 https://doi.org/10.1021/ja01594a055
    18 https://doi.org/10.1080/01496390500333160
    19 https://doi.org/10.1080/15321799708009650
    20 schema:description <p id="p-0001" num="0000">Isosorbide-derived epoxies and methods of making same are disclosed. Isosorbide and its isomers are attached to glycidyl ether to make crosslinkable epoxy resin monomers. Adding the hydrophobic functional group into the backbone of isosorbide epoxy or adjusting the amount and type of crosslinker is operable to modify the mechanical properties and water uptake ratio (from &lt;1 wt % to &gt;50 wt %) of the isosorbide-derived epoxies for different uses. High water uptake epoxies with controllable biodegradation rate are suitable for drug delivery systems or extracellular matrices for biomedical applications, while low water uptake epoxies with strong mechanical properties may be used for can coatings, bone cements and other industrial additives and adhesives.</p>
    21 schema:keywords WT
    22 additive
    23 adhesive
    24 backbone
    25 biodegradation rate
    26 biomedical application
    27 bone cement
    28 coating
    29 crosslinkers
    30 different us
    31 drug delivery system
    32 epoxy
    33 epoxy resin
    34 ether
    35 extracellular matrix
    36 functional group
    37 isomer
    38 mechanical property
    39 method
    40 water uptake
    41 schema:name Isosorbide-derived epoxy resins and methods of making same
    42 schema:recipient https://www.grid.ac/institutes/grid.260896.3
    43 schema:sameAs https://app.dimensions.ai/details/patent/US-9605108-B2
    44 schema:sdDatePublished 2019-03-07T15:34
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Ndb2403b4b2964b7990e9d4ac4c57f0f0
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset patents
    49 rdf:type sgo:Patent
    50 N31348d687f0640a0b1d995aede4da2f3 rdf:first N8a91d5e5e13f460d956b07cbc9c37851
    51 rdf:rest N6545d93cc4334e7e9e82c83e49b92f08
    52 N63a22abf36e64a8e9c04c99eac8ad62a rdf:first Ne528ba5ddec6428096b75259e15df851
    53 rdf:rest N31348d687f0640a0b1d995aede4da2f3
    54 N6545d93cc4334e7e9e82c83e49b92f08 rdf:first Nd004cff87b1c4ae2b00fbbf7095f8d0a
    55 rdf:rest rdf:nil
    56 N6649bfb50b47438d9065ca12c233174c rdf:first Nf0793af8f9404c0ab19c8d24c1b05356
    57 rdf:rest N63a22abf36e64a8e9c04c99eac8ad62a
    58 N8a91d5e5e13f460d956b07cbc9c37851 schema:name Michael Jaffe
    59 rdf:type schema:Person
    60 Nd004cff87b1c4ae2b00fbbf7095f8d0a schema:name Xianhong Feng
    61 rdf:type schema:Person
    62 Ndb2403b4b2964b7990e9d4ac4c57f0f0 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Ne528ba5ddec6428096b75259e15df851 schema:name Anthony East
    65 rdf:type schema:Person
    66 Nf0793af8f9404c0ab19c8d24c1b05356 schema:name Willis Hammond
    67 rdf:type schema:Person
    68 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
    69 rdf:type schema:DefinedTerm
    70 sg:pub.10.1007/s00253-004-1733-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000433309
    71 https://doi.org/10.1007/s00253-004-1733-0
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/s10973-012-2581-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034577899
    74 https://doi.org/10.1007/s10973-012-2581-2
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303596
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1002/1097-4636(2001)58:2<209::aid-jbm1009>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014629342
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1002/pat.1859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039234247
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1002/pi.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002869155
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/j.polymer.2011.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032108585
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/j.progpolymsci.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007089260
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/s0040-4020(00)00539-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006854589
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/s0040-4039(00)00416-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050172689
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/s0045-6535(00)00079-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034990497
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/s0045-6535(97)10133-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004499218
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1021/bk-1994-0575.ch001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824355
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1021/ef060097w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055476486
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1021/ja01594a055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055810657
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1080/01496390500333160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042475479
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1080/15321799708009650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058399931
    105 rdf:type schema:CreativeWork
    106 https://www.grid.ac/institutes/grid.260896.3 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...