Method for reconstructing 3D scenes from 2D images


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Srikumar Ramalingam , Yuichi Taguchi , Jaishanker K Pillai , Dan J Burns , Christopher Reed Laughman

ABSTRACT

A method reconstructs at three-dimensional (3D) real-world scene from a single two-dimensional (2D) image by identifying junctions satisfying geometric constraint of the scene based on intersecting lines, vanishing points, and vanishing lines that are orthogonal to each other. Possible layouts of the scene are generated by sampling the 2D image according to the junctions. Then, an energy function is maximized to select an optimal layout from the possible layouts. The energy function use's a conditional random field (CRF) model to evaluate the possible layouts. More... »

Related SciGraph Publications

  • 2008-01. 3-D Depth Reconstruction from a Single Still Image in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Srikumar Ramalingam", 
            "type": "Person"
          }, 
          {
            "name": "Yuichi Taguchi", 
            "type": "Person"
          }, 
          {
            "name": "Jaishanker K Pillai", 
            "type": "Person"
          }, 
          {
            "name": "Dan J Burns", 
            "type": "Person"
          }, 
          {
            "name": "Christopher Reed Laughman", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11263-007-0071-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014656451", 
              "https://doi.org/10.1007/s11263-007-0071-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4236/jfcmv.2013.11005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043256659"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    A method reconstructs at three-dimensional (3D) real-world scene from a single two-dimensional (2D) image by identifying junctions satisfying geometric constraint of the scene based on intersecting lines, vanishing points, and vanishing lines that are orthogonal to each other. Possible layouts of the scene are generated by sampling the 2D image according to the junctions. Then, an energy function is maximized to select an optimal layout from the possible layouts. The energy function use's a conditional random field (CRF) model to evaluate the possible layouts.

    ", "id": "sg:patent.US-9595134-B2", "keywords": [ "method", "reconstructing", "reconstructs", "real-world scene", "geometric constraint", "scene", "intersecting", "vanishing", "layout", "sampling", "junction", "energy function", "conditional random field" ], "name": "Method for reconstructing 3D scenes from 2D images", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.466925.a", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9595134-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:35", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b7bdf8d8.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9595134-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9595134-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9595134-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9595134-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    57 TRIPLES      14 PREDICATES      28 URIs      20 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-9595134-B2 schema:about anzsrc-for:2746
    2 schema:author Nf4bd1bf05cca4183bd67eb161a062278
    3 schema:citation sg:pub.10.1007/s11263-007-0071-y
    4 https://doi.org/10.4236/jfcmv.2013.11005
    5 schema:description <p id="p-0001" num="0000">A method reconstructs at three-dimensional (3D) real-world scene from a single two-dimensional (2D) image by identifying junctions satisfying geometric constraint of the scene based on intersecting lines, vanishing points, and vanishing lines that are orthogonal to each other. Possible layouts of the scene are generated by sampling the 2D image according to the junctions. Then, an energy function is maximized to select an optimal layout from the possible layouts. The energy function use's a conditional random field (CRF) model to evaluate the possible layouts.</p>
    6 schema:keywords conditional random field
    7 energy function
    8 geometric constraint
    9 intersecting
    10 junction
    11 layout
    12 method
    13 real-world scene
    14 reconstructing
    15 reconstructs
    16 sampling
    17 scene
    18 vanishing
    19 schema:name Method for reconstructing 3D scenes from 2D images
    20 schema:recipient https://www.grid.ac/institutes/grid.466925.a
    21 schema:sameAs https://app.dimensions.ai/details/patent/US-9595134-B2
    22 schema:sdDatePublished 2019-03-07T15:35
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher Nb830cc9adcb84e539f7da9f9fe03ef13
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset patents
    27 rdf:type sgo:Patent
    28 N0e5252563ce04f6a8a9bd731bcfa252f rdf:first Nefc3acd335a44d5cb52b5873c4de9093
    29 rdf:rest Nfca939567e2c4756b412161857457654
    30 N2c617ba9fa6744c2a22e72bf8e52072c schema:name Srikumar Ramalingam
    31 rdf:type schema:Person
    32 N667e8f1e4b294b7e8c53e0c028b7951c schema:name Christopher Reed Laughman
    33 rdf:type schema:Person
    34 N94567fb1d2d54e458c058d56c38f9814 schema:name Jaishanker K Pillai
    35 rdf:type schema:Person
    36 Nb830cc9adcb84e539f7da9f9fe03ef13 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 Nba8831a461d54bf0861bebecca9f3013 rdf:first Nc7b1ce2a22b8415f8fde3dcef5fb8be0
    39 rdf:rest Nf93f8f380a3c47c1829e856b674c0cd5
    40 Nc7b1ce2a22b8415f8fde3dcef5fb8be0 schema:name Dan J Burns
    41 rdf:type schema:Person
    42 Nefc3acd335a44d5cb52b5873c4de9093 schema:name Yuichi Taguchi
    43 rdf:type schema:Person
    44 Nf4bd1bf05cca4183bd67eb161a062278 rdf:first N2c617ba9fa6744c2a22e72bf8e52072c
    45 rdf:rest N0e5252563ce04f6a8a9bd731bcfa252f
    46 Nf93f8f380a3c47c1829e856b674c0cd5 rdf:first N667e8f1e4b294b7e8c53e0c028b7951c
    47 rdf:rest rdf:nil
    48 Nfca939567e2c4756b412161857457654 rdf:first N94567fb1d2d54e458c058d56c38f9814
    49 rdf:rest Nba8831a461d54bf0861bebecca9f3013
    50 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    51 rdf:type schema:DefinedTerm
    52 sg:pub.10.1007/s11263-007-0071-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014656451
    53 https://doi.org/10.1007/s11263-007-0071-y
    54 rdf:type schema:CreativeWork
    55 https://doi.org/10.4236/jfcmv.2013.11005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043256659
    56 rdf:type schema:CreativeWork
    57 https://www.grid.ac/institutes/grid.466925.a schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...