Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Sung Hyun Jo , Kuk-Hwan Kim , Joanna BETTINGER

ABSTRACT

Providing for three-dimensional memory cells having enhanced electric field characteristics and/or memory cells located at broken interconnects is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Sung Hyun Jo", 
        "type": "Person"
      }, 
      {
        "name": "Kuk-Hwan Kim", 
        "type": "Person"
      }, 
      {
        "name": "Joanna BETTINGER", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/14/4/311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000008791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90394-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001871718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803669s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004292239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207219208925733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011066753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207219208925733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011066753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1101(99)00182-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012626917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/45/10/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015880974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016486670", 
          "https://doi.org/10.1038/nmat2023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(81)90038-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019815338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073225h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021056823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021708578", 
          "https://doi.org/10.1038/21602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90346-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026464105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(85)90912-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026664535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl904092h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036030317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036680225", 
          "https://doi.org/10.1038/nmat2028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5426.391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039329548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/12/2/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041714625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041881218", 
          "https://doi.org/10.1038/nature03190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418639108224451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046191748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073224p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-i-1.1982.0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056855000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.102396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057649973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.99491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058139581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/16.861587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061097083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2008.2010584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061593033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2003.808508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.570478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062180525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1095520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5258.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.24.1363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063040187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2004.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067968603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2004.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067968607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3938/jkps.54.1077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071748921"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Providing for three-dimensional memory cells having enhanced electric field characteristics and/or memory cells located at broken interconnects is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.

", "id": "sg:patent.US-9564587-B1", "keywords": [ "terminal", "electric field", "interconnects", "memory cell", "layer", "non-zero", "substrate surface", "aspect", "angle", "current density", "switching time", "memory performance" ], "name": "Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects", "sameAs": [ "https://app.dimensions.ai/details/patent/US-9564587-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:33", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_2f12e043.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9564587-B1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9564587-B1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9564587-B1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9564587-B1'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      13 PREDICATES      56 URIs      19 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9564587-B1 schema:about anzsrc-for:2921
2 schema:author Ne8f9ce7ecc2f41c996577c7cc5c87582
3 schema:citation sg:pub.10.1038/21602
4 sg:pub.10.1038/nature03190
5 sg:pub.10.1038/nmat2023
6 sg:pub.10.1038/nmat2028
7 https://doi.org/10.1016/0022-3093(85)90912-3
8 https://doi.org/10.1016/0022-3093(89)90346-3
9 https://doi.org/10.1016/0022-3093(89)90394-3
10 https://doi.org/10.1016/0038-1101(81)90038-1
11 https://doi.org/10.1016/s0038-1101(99)00182-3
12 https://doi.org/10.1021/nl073224p
13 https://doi.org/10.1021/nl073225h
14 https://doi.org/10.1021/nl803669s
15 https://doi.org/10.1021/nl904092h
16 https://doi.org/10.1049/ip-i-1.1982.0009
17 https://doi.org/10.1063/1.102396
18 https://doi.org/10.1063/1.99491
19 https://doi.org/10.1080/00207219208925733
20 https://doi.org/10.1080/01418639108224451
21 https://doi.org/10.1088/0034-4885/45/10/003
22 https://doi.org/10.1088/0957-4484/12/2/303
23 https://doi.org/10.1088/0957-4484/14/4/311
24 https://doi.org/10.1109/16.861587
25 https://doi.org/10.1109/ted.2008.2010584
26 https://doi.org/10.1109/tnano.2003.808508
27 https://doi.org/10.1116/1.570478
28 https://doi.org/10.1126/science.1095520
29 https://doi.org/10.1126/science.272.5258.85
30 https://doi.org/10.1126/science.285.5426.391
31 https://doi.org/10.1143/jjap.24.1363
32 https://doi.org/10.1557/mrs2004.232
33 https://doi.org/10.1557/mrs2004.236
34 https://doi.org/10.3938/jkps.54.1077
35 schema:description <p id="p-0001" num="0000">Providing for three-dimensional memory cells having enhanced electric field characteristics and/or memory cells located at broken interconnects is described herein. By way of example, a two-terminal memory cell can be constructed from a layered stack of materials, where respective layers are arranged along a direction that forms a non-zero angle to a normal direction of a substrate surface upon which the layered stack of materials is constructed. In some aspects, the direction can be orthogonal to or substantially orthogonal to the normal direction. In other aspects, the direction can be less than orthogonal to the normal direction. Where an internal angle of the memory cell forms a non-orthogonal angle, an enhanced electric field or current density can result, providing improved switching times and memory performance.</p>
36 schema:keywords angle
37 aspect
38 current density
39 electric field
40 interconnects
41 layer
42 memory cell
43 memory performance
44 non-zero
45 substrate surface
46 switching time
47 terminal
48 schema:name Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
49 schema:sameAs https://app.dimensions.ai/details/patent/US-9564587-B1
50 schema:sdDatePublished 2019-03-07T15:33
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nf67dbe4822da45f1ad9aa7bb55045791
53 sgo:license sg:explorer/license/
54 sgo:sdDataset patents
55 rdf:type sgo:Patent
56 N22838561e9e941f1849a643ce91b4cb3 schema:name Joanna BETTINGER
57 rdf:type schema:Person
58 N3c8ce9eb6e234b57930e463f88ae843e rdf:first N22838561e9e941f1849a643ce91b4cb3
59 rdf:rest rdf:nil
60 N5287ea9371a94d139835ae46be0f1841 rdf:first Nade7a3bcb2fe4e71ae0aaf7ff1d4adbc
61 rdf:rest N3c8ce9eb6e234b57930e463f88ae843e
62 Nade7a3bcb2fe4e71ae0aaf7ff1d4adbc schema:name Kuk-Hwan Kim
63 rdf:type schema:Person
64 Ne8f9ce7ecc2f41c996577c7cc5c87582 rdf:first Nf46ee70faf48411a8dff5aa0d76e8554
65 rdf:rest N5287ea9371a94d139835ae46be0f1841
66 Nf46ee70faf48411a8dff5aa0d76e8554 schema:name Sung Hyun Jo
67 rdf:type schema:Person
68 Nf67dbe4822da45f1ad9aa7bb55045791 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
71 rdf:type schema:DefinedTerm
72 sg:pub.10.1038/21602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021708578
73 https://doi.org/10.1038/21602
74 rdf:type schema:CreativeWork
75 sg:pub.10.1038/nature03190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041881218
76 https://doi.org/10.1038/nature03190
77 rdf:type schema:CreativeWork
78 sg:pub.10.1038/nmat2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016486670
79 https://doi.org/10.1038/nmat2023
80 rdf:type schema:CreativeWork
81 sg:pub.10.1038/nmat2028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036680225
82 https://doi.org/10.1038/nmat2028
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0022-3093(85)90912-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026664535
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0022-3093(89)90346-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026464105
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0022-3093(89)90394-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001871718
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0038-1101(81)90038-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019815338
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/s0038-1101(99)00182-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012626917
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1021/nl073224p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217645
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1021/nl073225h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021056823
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1021/nl803669s schema:sameAs https://app.dimensions.ai/details/publication/pub.1004292239
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1021/nl904092h schema:sameAs https://app.dimensions.ai/details/publication/pub.1036030317
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1049/ip-i-1.1982.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056855000
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.102396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057649973
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.99491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058139581
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/00207219208925733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011066753
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/01418639108224451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046191748
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0034-4885/45/10/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015880974
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0957-4484/12/2/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041714625
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0957-4484/14/4/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000008791
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/16.861587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061097083
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/ted.2008.2010584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061593033
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tnano.2003.808508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711765
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1116/1.570478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062180525
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1126/science.1095520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449454
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1126/science.272.5258.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552676
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1126/science.285.5426.391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039329548
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1143/jjap.24.1363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063040187
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1557/mrs2004.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968603
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1557/mrs2004.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968607
137 rdf:type schema:CreativeWork
138 https://doi.org/10.3938/jkps.54.1077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071748921
139 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...