Systems and methods for smart tools in sequence pipelines


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Nebojsa Tijanic , Luka Stojanovic , Damir Cohadarevic , Sinisa Ivkovic

ABSTRACT

A tool in a bioinformatics pipeline can include a smart wrapper and an executable. The smart wrapper can cause the executable to analyze the sequence data it receives and can also selectively change to the pipeline when circumstances warrant. In certain aspects, a system for genomic analysis includes a processor coupled to a non-transitory memory. The system is operable to present to a user a plurality of genomic tools organized into a pipeline. At least a first one of the tools comprises an executable and a wrapper script. The system can receive instructions from the user and sequence data—instructions that call for the sequence data to be analyzed by the pipeline—and select, using the wrapper script, a change to the pipeline. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2620", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Nebojsa Tijanic", 
        "type": "Person"
      }, 
      {
        "name": "Luka Stojanovic", 
        "type": "Person"
      }, 
      {
        "name": "Damir Cohadarevic", 
        "type": "Person"
      }, 
      {
        "name": "Sinisa Ivkovic", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bib/6.1.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000972847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002897135", 
          "https://doi.org/10.1038/nmeth.2474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003916449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.077065.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006399713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006753974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007287636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007683223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.194201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008144266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009798986", 
          "https://doi.org/10.1038/nmeth.1613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.135350.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012073457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012266713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013776641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014155557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014649663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014840377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014986209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-4-r36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015459845", 
          "https://doi.org/10.1186/gb-2013-14-4-r36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015803168", 
          "https://doi.org/10.1038/nbt.1883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016441007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpe.993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021303469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021488500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023229632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023969907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025260149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.8.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025315480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025339324", 
          "https://doi.org/10.1038/nbt.1633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026720622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/319501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027413555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/313064a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028301226", 
          "https://doi.org/10.1038/313064a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028365812", 
          "https://doi.org/10.1186/1471-2164-14-159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029467065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.9.817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029580565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2889405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029639613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029663613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031694006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-10-r99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032005130", 
          "https://doi.org/10.1186/gb-2010-11-10-r99"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032102367", 
          "https://doi.org/10.1038/nmeth.1517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032165726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032254527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.7.1647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032965452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034691734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2013.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035589899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.8.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035928070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3030405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037614264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-9-r98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038374959", 
          "https://doi.org/10.1186/gb-2009-10-9-r98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes3030545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039261957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mrrev.2011.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040107525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040311455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.11.2369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041672956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcss.2009.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041711242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1859804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041901016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1103388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042244151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043301791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047400187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/853916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050880402", 
          "https://doi.org/10.1155/2010/853916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052838811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8240(86)90010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/587000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058800235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.330039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2013.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14806/ej.19.b.727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067372994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijbra.2010.036000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067439406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijcat.2005.006799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067440990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/rna.19683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072309954"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A tool in a bioinformatics pipeline can include a smart wrapper and an executable. The smart wrapper can cause the executable to analyze the sequence data it receives and can also selectively change to the pipeline when circumstances warrant. In certain aspects, a system for genomic analysis includes a processor coupled to a non-transitory memory. The system is operable to present to a user a plurality of genomic tools organized into a pipeline. At least a first one of the tools comprises an executable and a wrapper script. The system can receive instructions from the user and sequence data—instructions that call for the sequence data to be analyzed by the pipeline—and select, using the wrapper script, a change to the pipeline.

", "id": "sg:patent.US-9558321-B2", "keywords": [ "method", "SMART", "sequence", "tool", "bioinformatics pipeline", "wrapper", "sequence data", "pipeline", "circumstance", "certain aspect", "genomic analysis", "processor", "memory", "user", "plurality", "genomic tool", "Instructional Film and Video", "call" ], "name": "Systems and methods for smart tools in sequence pipelines", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.492568.4", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9558321-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:30", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_0782263a.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9558321-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9558321-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9558321-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9558321-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

299 TRIPLES      14 PREDICATES      109 URIs      25 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9558321-B2 schema:about anzsrc-for:2620
2 schema:author Na34bae02f801468fbc5ff0dd8df48ab4
3 schema:citation sg:pub.10.1038/313064a0
4 sg:pub.10.1038/nature03959
5 sg:pub.10.1038/nbt.1621
6 sg:pub.10.1038/nbt.1633
7 sg:pub.10.1038/nbt.1883
8 sg:pub.10.1038/nmeth.1517
9 sg:pub.10.1038/nmeth.1613
10 sg:pub.10.1038/nmeth.2474
11 sg:pub.10.1038/nrg2484
12 sg:pub.10.1155/2010/853916
13 sg:pub.10.1186/1471-2164-14-159
14 sg:pub.10.1186/gb-2009-10-9-r98
15 sg:pub.10.1186/gb-2010-11-10-r99
16 sg:pub.10.1186/gb-2013-14-4-r36
17 https://doi.org/10.1002/cpe.993
18 https://doi.org/10.1016/0022-2836(70)90057-4
19 https://doi.org/10.1016/0022-2836(81)90087-5
20 https://doi.org/10.1016/0022-2836(82)90398-9
21 https://doi.org/10.1016/j.jcss.2009.11.009
22 https://doi.org/10.1016/j.jsb.2013.02.017
23 https://doi.org/10.1016/j.mrrev.2011.10.002
24 https://doi.org/10.1016/j.sbi.2005.04.002
25 https://doi.org/10.1016/j.ygeno.2010.02.001
26 https://doi.org/10.1016/j.ygeno.2010.03.001
27 https://doi.org/10.1016/s0092-8240(86)90010-8
28 https://doi.org/10.1073/pnas.85.8.2444
29 https://doi.org/10.1086/319501
30 https://doi.org/10.1086/587000
31 https://doi.org/10.1093/bib/6.1.23
32 https://doi.org/10.1093/bib/bbq015
33 https://doi.org/10.1093/bioinformatics/14.9.817
34 https://doi.org/10.1093/bioinformatics/16.8.699
35 https://doi.org/10.1093/bioinformatics/18.3.452
36 https://doi.org/10.1093/bioinformatics/btg007
37 https://doi.org/10.1093/bioinformatics/bth361
38 https://doi.org/10.1093/bioinformatics/bth397
39 https://doi.org/10.1093/bioinformatics/bti424
40 https://doi.org/10.1093/bioinformatics/bti795
41 https://doi.org/10.1093/bioinformatics/btl101
42 https://doi.org/10.1093/bioinformatics/btl582
43 https://doi.org/10.1093/bioinformatics/btm404
44 https://doi.org/10.1093/bioinformatics/btm578
45 https://doi.org/10.1093/bioinformatics/btn025
46 https://doi.org/10.1093/bioinformatics/btn032
47 https://doi.org/10.1093/bioinformatics/btn082
48 https://doi.org/10.1093/bioinformatics/btn095
49 https://doi.org/10.1093/bioinformatics/btn397
50 https://doi.org/10.1093/bioinformatics/btp120
51 https://doi.org/10.1093/bioinformatics/btp336
52 https://doi.org/10.1093/bioinformatics/btp352
53 https://doi.org/10.1093/bioinformatics/btq057
54 https://doi.org/10.1093/bioinformatics/btq464
55 https://doi.org/10.1093/bioinformatics/btq475
56 https://doi.org/10.1093/bioinformatics/btr330
57 https://doi.org/10.1093/bioinformatics/btr442
58 https://doi.org/10.1093/bioinformatics/btt127
59 https://doi.org/10.1093/bioinformatics/btt396
60 https://doi.org/10.1093/nar/27.11.2369
61 https://doi.org/10.1093/nar/29.7.1647
62 https://doi.org/10.1093/nar/gkh731
63 https://doi.org/10.1093/nar/gki520
64 https://doi.org/10.1093/nar/gkl396
65 https://doi.org/10.1101/gr.077065.108
66 https://doi.org/10.1101/gr.107524.110
67 https://doi.org/10.1101/gr.135350.111
68 https://doi.org/10.1101/gr.1859804
69 https://doi.org/10.1101/gr.194201
70 https://doi.org/10.1101/gr.2889405
71 https://doi.org/10.1101/gr.3030405
72 https://doi.org/10.1109/2.330039
73 https://doi.org/10.1109/tcbb.2013.140
74 https://doi.org/10.1126/science.1103388
75 https://doi.org/10.1371/journal.pcbi.1000589
76 https://doi.org/10.14806/ej.19.b.727
77 https://doi.org/10.1504/ijbra.2010.036000
78 https://doi.org/10.1504/ijcat.2005.006799
79 https://doi.org/10.3390/genes3030545
80 https://doi.org/10.4161/rna.19683
81 schema:description <p id="p-0001" num="0000">A tool in a bioinformatics pipeline can include a smart wrapper and an executable. The smart wrapper can cause the executable to analyze the sequence data it receives and can also selectively change to the pipeline when circumstances warrant. In certain aspects, a system for genomic analysis includes a processor coupled to a non-transitory memory. The system is operable to present to a user a plurality of genomic tools organized into a pipeline. At least a first one of the tools comprises an executable and a wrapper script. The system can receive instructions from the user and sequence data&#8212;instructions that call for the sequence data to be analyzed by the pipeline&#8212;and select, using the wrapper script, a change to the pipeline.</p>
82 schema:keywords Instructional Film and Video
83 SMART
84 bioinformatics pipeline
85 call
86 certain aspect
87 circumstance
88 genomic analysis
89 genomic tool
90 memory
91 method
92 pipeline
93 plurality
94 processor
95 sequence
96 sequence data
97 tool
98 user
99 wrapper
100 schema:name Systems and methods for smart tools in sequence pipelines
101 schema:recipient https://www.grid.ac/institutes/grid.492568.4
102 schema:sameAs https://app.dimensions.ai/details/patent/US-9558321-B2
103 schema:sdDatePublished 2019-03-07T15:30
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher N7ea918ab84854d0d8912223796ee7165
106 sgo:license sg:explorer/license/
107 sgo:sdDataset patents
108 rdf:type sgo:Patent
109 N205d09fead1a4f82b112c57580fcfd85 rdf:first Nbd03d4cae4a6420dade3241d3f3a9043
110 rdf:rest Nb90cbb6606d04c90b54001cd7e633db9
111 N6bb26dee1c7b40d793c3156b74df90c8 schema:name Luka Stojanovic
112 rdf:type schema:Person
113 N7ea918ab84854d0d8912223796ee7165 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Na34bae02f801468fbc5ff0dd8df48ab4 rdf:first Nf95814929ed5417396c33e3aae5bcb51
116 rdf:rest Ne339f2e81e7b417d89986b95bddb5be3
117 Nb90cbb6606d04c90b54001cd7e633db9 rdf:first Necac822782184e55a34ccbec535c5658
118 rdf:rest rdf:nil
119 Nbd03d4cae4a6420dade3241d3f3a9043 schema:name Damir Cohadarevic
120 rdf:type schema:Person
121 Ne339f2e81e7b417d89986b95bddb5be3 rdf:first N6bb26dee1c7b40d793c3156b74df90c8
122 rdf:rest N205d09fead1a4f82b112c57580fcfd85
123 Necac822782184e55a34ccbec535c5658 schema:name Sinisa Ivkovic
124 rdf:type schema:Person
125 Nf95814929ed5417396c33e3aae5bcb51 schema:name Nebojsa Tijanic
126 rdf:type schema:Person
127 anzsrc-for:2620 schema:inDefinedTermSet anzsrc-for:
128 rdf:type schema:DefinedTerm
129 sg:pub.10.1038/313064a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028301226
130 https://doi.org/10.1038/313064a0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
133 https://doi.org/10.1038/nature03959
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
136 https://doi.org/10.1038/nbt.1621
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nbt.1633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025339324
139 https://doi.org/10.1038/nbt.1633
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
142 https://doi.org/10.1038/nbt.1883
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nmeth.1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032102367
145 https://doi.org/10.1038/nmeth.1517
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nmeth.1613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009798986
148 https://doi.org/10.1038/nmeth.1613
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nmeth.2474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002897135
151 https://doi.org/10.1038/nmeth.2474
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
154 https://doi.org/10.1038/nrg2484
155 rdf:type schema:CreativeWork
156 sg:pub.10.1155/2010/853916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050880402
157 https://doi.org/10.1155/2010/853916
158 rdf:type schema:CreativeWork
159 sg:pub.10.1186/1471-2164-14-159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028365812
160 https://doi.org/10.1186/1471-2164-14-159
161 rdf:type schema:CreativeWork
162 sg:pub.10.1186/gb-2009-10-9-r98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038374959
163 https://doi.org/10.1186/gb-2009-10-9-r98
164 rdf:type schema:CreativeWork
165 sg:pub.10.1186/gb-2010-11-10-r99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032005130
166 https://doi.org/10.1186/gb-2010-11-10-r99
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/gb-2013-14-4-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015459845
169 https://doi.org/10.1186/gb-2013-14-4-r36
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/cpe.993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021303469
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jcss.2009.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041711242
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jsb.2013.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035589899
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.mrrev.2011.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040107525
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.sbi.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040311455
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.ygeno.2010.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023969907
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ygeno.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052838811
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0092-8240(86)90010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614786
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1073/pnas.85.8.2444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928070
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1086/319501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027413555
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1086/587000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058800235
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bib/6.1.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000972847
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bib/bbq015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019203929
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/14.9.817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029580565
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/16.8.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025315480
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/18.3.452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021488500
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/btg007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034691734
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/bth361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029467065
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/bth397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043301791
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/bioinformatics/bti424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042244151
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/bti795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023229632
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/bioinformatics/btl101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014649663
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/bioinformatics/btl582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014155557
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/bioinformatics/btm404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683223
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/bioinformatics/btm578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306518
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/bioinformatics/btn032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032165726
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/bioinformatics/btn082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047400187
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/bioinformatics/btn095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029663613
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/bioinformatics/btn397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006753974
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/bioinformatics/btq057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025260149
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bioinformatics/btq464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003916449
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/bioinformatics/btq475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174360
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/bioinformatics/btr442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014986209
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/bioinformatics/btt127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026720622
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/bioinformatics/btt396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013776641
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1093/nar/27.11.2369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041672956
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1093/nar/29.7.1647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032965452
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1093/nar/gkh731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031694006
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1093/nar/gki520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007287636
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1093/nar/gkl396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032254527
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1101/gr.077065.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006399713
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1101/gr.135350.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012073457
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1101/gr.1859804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041901016
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1101/gr.194201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008144266
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1101/gr.2889405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029639613
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1101/gr.3030405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037614264
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1109/2.330039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105365
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1109/tcbb.2013.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541132
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1126/science.1103388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123507
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1371/journal.pcbi.1000589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014840377
288 rdf:type schema:CreativeWork
289 https://doi.org/10.14806/ej.19.b.727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372994
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1504/ijbra.2010.036000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067439406
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1504/ijcat.2005.006799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067440990
294 rdf:type schema:CreativeWork
295 https://doi.org/10.3390/genes3030545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039261957
296 rdf:type schema:CreativeWork
297 https://doi.org/10.4161/rna.19683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072309954
298 rdf:type schema:CreativeWork
299 https://www.grid.ac/institutes/grid.492568.4 schema:Organization
 




Preview window. Press ESC to close (or click here)


...