Gate-tunable P-N heterojunction diode, and fabrication method and application of same


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Mark C. Hersam , Deep M. Jariwala , Vinod K. Sangwan

ABSTRACT

One aspect of the invention relates to a gate-tunable p-n heterojunction diode including a vertical stacked heterojunction of two ultrathin semiconductors. In one embodiment, single-layer molybdenum disulphide of an n-type semiconductor are stacked below semiconducting single-walled carbon nanotubes of a p-type semiconductor with each of them connected to a gold electrodes to form a p-n heterojunction. The electrical properties of the p-n heterojunction can be modulated by a gate voltage applied to a gate electrode and range from an insulator to a linear-response resistor to a highly rectifying diode. The gate tunability of the p-n heterojunction also allows spectral control over the photoresponse. More... »

Related SciGraph Publications

  • 2010-05. Atomic layers of hybridized boron nitride and graphene domains in NATURE MATERIALS
  • 2006-10. Sorting carbon nanotubes by electronic structure using density differentiation in NATURE NANOTECHNOLOGY
  • 2010-10. Boron nitride substrates for high-quality graphene electronics in NATURE NANOTECHNOLOGY
  • 2013-03. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters in NATURE MATERIALS
  • 2010-06. Nanostructured materials for photon detection in NATURE NANOTECHNOLOGY
  • 2013-03. Tightly bound trions in monolayer MoS2 in NATURE MATERIALS
  • 2013-02. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes in NATURE NANOTECHNOLOGY
  • 2010-07. Graphene transistors in NATURE NANOTECHNOLOGY
  • 2011-03. Single-layer MoS2 transistors in NATURE NANOTECHNOLOGY
  • 2012-08. Graphene and boron nitride lateral heterostructures for atomically thin circuitry in NATURE
  • 2011-12. Tunable metal–insulator transition in double-layer graphene heterostructures in NATURE PHYSICS
  • 2013-02. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics in NATURE NANOTECHNOLOGY
  • 2012-06. Hybrid graphene–quantum dot phototransistors with ultrahigh gain in NATURE NANOTECHNOLOGY
  • 2012-11. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides in NATURE NANOTECHNOLOGY
  • 2009-06. Near-infrared imaging with quantum-dot-sensitized organic photodiodes in NATURE PHOTONICS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3021", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Mark C. Hersam", 
            "type": "Person"
          }, 
          {
            "name": "Deep M. Jariwala", 
            "type": "Person"
          }, 
          {
            "name": "Vinod K. Sangwan", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.1220527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001029963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1218461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001321657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003508277", 
              "https://doi.org/10.1038/nnano.2010.78"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005561651", 
              "https://doi.org/10.1038/nnano.2012.256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.287.5459.1801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007182871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009145791", 
              "https://doi.org/10.1038/nmat3505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn3059136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011019636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011423110", 
              "https://doi.org/10.1038/nnano.2010.89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013804181", 
              "https://doi.org/10.1038/nphys2114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014580392", 
              "https://doi.org/10.1038/nnano.2012.224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018587379", 
              "https://doi.org/10.1038/nnano.2010.172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl302015v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020530380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2cs35335k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021802155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022647944", 
              "https://doi.org/10.1038/nature11408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028198461", 
              "https://doi.org/10.1038/nmat3518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028219354", 
              "https://doi.org/10.1038/nnano.2012.193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2006.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028729458", 
              "https://doi.org/10.1038/nnano.2006.52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4801844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029079862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029499740", 
              "https://doi.org/10.1038/nnano.2012.60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1235547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030349025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn1003937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030794634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034820877", 
              "https://doi.org/10.1038/nmat2711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201100034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035815486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047704758", 
              "https://doi.org/10.1038/nnano.2010.279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048387606", 
              "https://doi.org/10.1038/nphoton.2009.72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn302768h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056224584"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    One aspect of the invention relates to a gate-tunable p-n heterojunction diode including a vertical stacked heterojunction of two ultrathin semiconductors. In one embodiment, single-layer molybdenum disulphide of an n-type semiconductor are stacked below semiconducting single-walled carbon nanotubes of a p-type semiconductor with each of them connected to a gold electrodes to form a p-n heterojunction. The electrical properties of the p-n heterojunction can be modulated by a gate voltage applied to a gate electrode and range from an insulator to a linear-response resistor to a highly rectifying diode. The gate tunability of the p-n heterojunction also allows spectral control over the photoresponse.

    ", "id": "sg:patent.US-9472686-B2", "keywords": [ "gate", "heterojunctions", "fabrication method", "aspect", "invention", "semiconductor", "embodiment", "molybdenum disulfide", "n-type", "single-walled carbon nanotube", "p-type", "gold electrode", "electrical property", "gate voltage", "gate electrode", "insulator", "linear response", "diode", "tunability", "control", "photoresponse" ], "name": "Gate-tunable P-N heterojunction diode, and fabrication method and application of same", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.16753.36", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9472686-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:36", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_c290c18d.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9472686-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9472686-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9472686-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9472686-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      14 PREDICATES      60 URIs      28 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-9472686-B2 schema:about anzsrc-for:3021
    2 schema:author Nfa4d0a3a467f4a6abeef0637edd94149
    3 schema:citation sg:pub.10.1038/nature11408
    4 sg:pub.10.1038/nmat2711
    5 sg:pub.10.1038/nmat3505
    6 sg:pub.10.1038/nmat3518
    7 sg:pub.10.1038/nnano.2006.52
    8 sg:pub.10.1038/nnano.2010.172
    9 sg:pub.10.1038/nnano.2010.279
    10 sg:pub.10.1038/nnano.2010.78
    11 sg:pub.10.1038/nnano.2010.89
    12 sg:pub.10.1038/nnano.2012.193
    13 sg:pub.10.1038/nnano.2012.224
    14 sg:pub.10.1038/nnano.2012.256
    15 sg:pub.10.1038/nnano.2012.60
    16 sg:pub.10.1038/nphoton.2009.72
    17 sg:pub.10.1038/nphys2114
    18 https://doi.org/10.1002/adma.201100034
    19 https://doi.org/10.1021/nl302015v
    20 https://doi.org/10.1021/nn1003937
    21 https://doi.org/10.1021/nn302768h
    22 https://doi.org/10.1021/nn3059136
    23 https://doi.org/10.1039/c2cs35335k
    24 https://doi.org/10.1063/1.4801844
    25 https://doi.org/10.1126/science.1218461
    26 https://doi.org/10.1126/science.1220527
    27 https://doi.org/10.1126/science.1235547
    28 https://doi.org/10.1126/science.287.5459.1801
    29 schema:description <p id="p-0001" num="0000">One aspect of the invention relates to a gate-tunable p-n heterojunction diode including a vertical stacked heterojunction of two ultrathin semiconductors. In one embodiment, single-layer molybdenum disulphide of an n-type semiconductor are stacked below semiconducting single-walled carbon nanotubes of a p-type semiconductor with each of them connected to a gold electrodes to form a p-n heterojunction. The electrical properties of the p-n heterojunction can be modulated by a gate voltage applied to a gate electrode and range from an insulator to a linear-response resistor to a highly rectifying diode. The gate tunability of the p-n heterojunction also allows spectral control over the photoresponse.</p>
    30 schema:keywords aspect
    31 control
    32 diode
    33 electrical property
    34 embodiment
    35 fabrication method
    36 gate
    37 gate electrode
    38 gate voltage
    39 gold electrode
    40 heterojunctions
    41 insulator
    42 invention
    43 linear response
    44 molybdenum disulfide
    45 n-type
    46 p-type
    47 photoresponse
    48 semiconductor
    49 single-walled carbon nanotube
    50 tunability
    51 schema:name Gate-tunable P-N heterojunction diode, and fabrication method and application of same
    52 schema:recipient https://www.grid.ac/institutes/grid.16753.36
    53 schema:sameAs https://app.dimensions.ai/details/patent/US-9472686-B2
    54 schema:sdDatePublished 2019-03-07T15:36
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N250726967c814f9fa5880a88bee355bc
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset patents
    59 rdf:type sgo:Patent
    60 N250726967c814f9fa5880a88bee355bc schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N329d07315602423c8f35fcfadf387d7a rdf:first Nfb7600c1757d4c2f9632ad154f3c926d
    63 rdf:rest rdf:nil
    64 N481b19d3f6ca4502ad06abfe746de86a schema:name Deep M. Jariwala
    65 rdf:type schema:Person
    66 Na354e663ce9b4b6ab44624ba607f3e46 schema:name Mark C. Hersam
    67 rdf:type schema:Person
    68 Nc7bb5ff619844eb593d3bfccc132791e rdf:first N481b19d3f6ca4502ad06abfe746de86a
    69 rdf:rest N329d07315602423c8f35fcfadf387d7a
    70 Nfa4d0a3a467f4a6abeef0637edd94149 rdf:first Na354e663ce9b4b6ab44624ba607f3e46
    71 rdf:rest Nc7bb5ff619844eb593d3bfccc132791e
    72 Nfb7600c1757d4c2f9632ad154f3c926d schema:name Vinod K. Sangwan
    73 rdf:type schema:Person
    74 anzsrc-for:3021 schema:inDefinedTermSet anzsrc-for:
    75 rdf:type schema:DefinedTerm
    76 sg:pub.10.1038/nature11408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022647944
    77 https://doi.org/10.1038/nature11408
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1038/nmat2711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034820877
    80 https://doi.org/10.1038/nmat2711
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1038/nmat3505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
    83 https://doi.org/10.1038/nmat3505
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1038/nmat3518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028198461
    86 https://doi.org/10.1038/nmat3518
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1038/nnano.2006.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028729458
    89 https://doi.org/10.1038/nnano.2006.52
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
    92 https://doi.org/10.1038/nnano.2010.172
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
    95 https://doi.org/10.1038/nnano.2010.279
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1038/nnano.2010.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003508277
    98 https://doi.org/10.1038/nnano.2010.78
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1038/nnano.2010.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011423110
    101 https://doi.org/10.1038/nnano.2010.89
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
    104 https://doi.org/10.1038/nnano.2012.193
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1038/nnano.2012.224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014580392
    107 https://doi.org/10.1038/nnano.2012.224
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/nnano.2012.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005561651
    110 https://doi.org/10.1038/nnano.2012.256
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/nnano.2012.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029499740
    113 https://doi.org/10.1038/nnano.2012.60
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/nphoton.2009.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048387606
    116 https://doi.org/10.1038/nphoton.2009.72
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1038/nphys2114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013804181
    119 https://doi.org/10.1038/nphys2114
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1002/adma.201100034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035815486
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1021/nl302015v schema:sameAs https://app.dimensions.ai/details/publication/pub.1020530380
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1021/nn1003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794634
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1021/nn302768h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224584
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1021/nn3059136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011019636
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1039/c2cs35335k schema:sameAs https://app.dimensions.ai/details/publication/pub.1021802155
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1063/1.4801844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029079862
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1126/science.1218461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001321657
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1126/science.1220527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001029963
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1126/science.1235547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030349025
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1126/science.287.5459.1801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007182871
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.16753.36 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...