Using machine learning to predict behavior based on local conditions


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Xinchuan Zeng , Jeffrey Berry , David Elkington

ABSTRACT

Using machine learning to predict behavior based on local conditions. In one example embodiment, a method for using machine learning to predict behavior based on local conditions may include identifying a lead, identifying a target behavior for the lead, identifying a locality associated with the lead, identifying a current local condition of the locality, and employing a machine learning classifier to generate a prediction of a likelihood of the lead exhibiting the target behavior. In this example embodiment, the machine learning classifier may base the prediction on the target behavior, the locality, and the current local condition. More... »

Related SciGraph Publications

  • 1988-08. Learning to predict by the methods of temporal differences in MACHINE LEARNING
  • 1986-03. Induction of decision trees in MACHINE LEARNING
  • 2003-12. Generalized rules for combination and joint training of classifiers in PATTERN ANALYSIS AND APPLICATIONS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Xinchuan Zeng", 
            "type": "Person"
          }, 
          {
            "name": "Jeffrey Berry", 
            "type": "Person"
          }, 
          {
            "name": "David Elkington", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10044-002-0188-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004610567", 
              "https://doi.org/10.1007/s10044-002-0188-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00116251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019422208", 
              "https://doi.org/10.1007/bf00116251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00116251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019422208", 
              "https://doi.org/10.1007/bf00116251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2009.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027819381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00115009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028679285", 
              "https://doi.org/10.1007/bf00115009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00115009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028679285", 
              "https://doi.org/10.1007/bf00115009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-c.1975.224110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061456072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1967.1053964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061646286"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    Using machine learning to predict behavior based on local conditions. In one example embodiment, a method for using machine learning to predict behavior based on local conditions may include identifying a lead, identifying a target behavior for the lead, identifying a locality associated with the lead, identifying a current local condition of the locality, and employing a machine learning classifier to generate a prediction of a likelihood of the lead exhibiting the target behavior. In this example embodiment, the machine learning classifier may base the prediction on the target behavior, the locality, and the current local condition.

    ", "id": "sg:patent.US-9460401-B2", "keywords": [ "machine", "behavior", "local condition", "embodiment", "method", "target behavior", "locality", "classifier", "prediction", "likelihood", "base" ], "name": "Using machine learning to predict behavior based on local conditions", "sameAs": [ "https://app.dimensions.ai/details/patent/US-9460401-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:33", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_2f12e043.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9460401-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9460401-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9460401-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9460401-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    59 TRIPLES      13 PREDICATES      29 URIs      18 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-9460401-B2 schema:about anzsrc-for:2746
    2 schema:author N614ffdb668414f808aefaa7c652b4977
    3 schema:citation sg:pub.10.1007/bf00115009
    4 sg:pub.10.1007/bf00116251
    5 sg:pub.10.1007/s10044-002-0188-0
    6 https://doi.org/10.1016/j.knosys.2009.12.002
    7 https://doi.org/10.1109/t-c.1975.224110
    8 https://doi.org/10.1109/tit.1967.1053964
    9 schema:description <p id="p-0001" num="0000">Using machine learning to predict behavior based on local conditions. In one example embodiment, a method for using machine learning to predict behavior based on local conditions may include identifying a lead, identifying a target behavior for the lead, identifying a locality associated with the lead, identifying a current local condition of the locality, and employing a machine learning classifier to generate a prediction of a likelihood of the lead exhibiting the target behavior. In this example embodiment, the machine learning classifier may base the prediction on the target behavior, the locality, and the current local condition.</p>
    10 schema:keywords base
    11 behavior
    12 classifier
    13 embodiment
    14 likelihood
    15 local condition
    16 locality
    17 machine
    18 method
    19 prediction
    20 target behavior
    21 schema:name Using machine learning to predict behavior based on local conditions
    22 schema:sameAs https://app.dimensions.ai/details/patent/US-9460401-B2
    23 schema:sdDatePublished 2019-03-07T15:33
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher Nb842d0b84a52498dac66c79fa83a9196
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset patents
    28 rdf:type sgo:Patent
    29 N24e12a6aeb1f4a32ad20186380426576 schema:name Jeffrey Berry
    30 rdf:type schema:Person
    31 N5510a444a4674e39b754bf7cde0baef7 rdf:first N24e12a6aeb1f4a32ad20186380426576
    32 rdf:rest Nda5ee4699b314623b722ca03839123b6
    33 N614ffdb668414f808aefaa7c652b4977 rdf:first N930c3c3cdd224c6fba17c72b2d682df6
    34 rdf:rest N5510a444a4674e39b754bf7cde0baef7
    35 N887382cbfb0b4e44b8274b6a7e41d5ac schema:name David Elkington
    36 rdf:type schema:Person
    37 N930c3c3cdd224c6fba17c72b2d682df6 schema:name Xinchuan Zeng
    38 rdf:type schema:Person
    39 Nb842d0b84a52498dac66c79fa83a9196 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 Nda5ee4699b314623b722ca03839123b6 rdf:first N887382cbfb0b4e44b8274b6a7e41d5ac
    42 rdf:rest rdf:nil
    43 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    44 rdf:type schema:DefinedTerm
    45 sg:pub.10.1007/bf00115009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028679285
    46 https://doi.org/10.1007/bf00115009
    47 rdf:type schema:CreativeWork
    48 sg:pub.10.1007/bf00116251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019422208
    49 https://doi.org/10.1007/bf00116251
    50 rdf:type schema:CreativeWork
    51 sg:pub.10.1007/s10044-002-0188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004610567
    52 https://doi.org/10.1007/s10044-002-0188-0
    53 rdf:type schema:CreativeWork
    54 https://doi.org/10.1016/j.knosys.2009.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027819381
    55 rdf:type schema:CreativeWork
    56 https://doi.org/10.1109/t-c.1975.224110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061456072
    57 rdf:type schema:CreativeWork
    58 https://doi.org/10.1109/tit.1967.1053964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646286
    59 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...