Classifying data with deep learning neural records incrementally refined through expert input


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

David Russell Williams, Jr. , Luke Robert Gutzwiller , Megan Ursula Hazen , Brigham Sterling Anderson , Alan McIntyre , Tom Abeles

ABSTRACT

Embodiments are directed towards classifying data using machine learning that may be incrementally refined based on expert input. Data provided to a deep learning model that may be trained based on a plurality of classifiers and sets of training data and/or testing data. If the number of classification errors exceeds a defined threshold classifiers may be modified based on data corresponding to observed classification errors. A fast learning model may be trained based on the modified classifiers, the data, and the data corresponding to the observed classification errors. And, another confidence value may be generated and associated with the classification of the data by the fast learning model. Report information may be generated based on a comparison result of the confidence value associated with the fast learning model and the confidence value associated with the deep learning model. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "David Russell Williams, Jr.", 
        "type": "Person"
      }, 
      {
        "name": "Luke Robert Gutzwiller", 
        "type": "Person"
      }, 
      {
        "name": "Megan Ursula Hazen", 
        "type": "Person"
      }, 
      {
        "name": "Brigham Sterling Anderson", 
        "type": "Person"
      }, 
      {
        "name": "Alan McIntyre", 
        "type": "Person"
      }, 
      {
        "name": "Tom Abeles", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(05)80056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014360644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/323533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367015", 
          "https://doi.org/10.1038/323533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.11.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025802159"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Embodiments are directed towards classifying data using machine learning that may be incrementally refined based on expert input. Data provided to a deep learning model that may be trained based on a plurality of classifiers and sets of training data and/or testing data. If the number of classification errors exceeds a defined threshold classifiers may be modified based on data corresponding to observed classification errors. A fast learning model may be trained based on the modified classifiers, the data, and the data corresponding to the observed classification errors. And, another confidence value may be generated and associated with the classification of the data by the fast learning model. Report information may be generated based on a comparison result of the confidence value associated with the fast learning model and the confidence value associated with the deep learning model.

", "id": "sg:patent.US-9324022-B2", "keywords": [ "classifying", "record", "expert input", "embodiment", "machine", "plurality", "classifier", "training data", "classification error", "confidence", "classification", "comparison" ], "name": "Classifying data with deep learning neural records incrementally refined through expert input", "sameAs": [ "https://app.dimensions.ai/details/patent/US-9324022-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:35", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b670b59c.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9324022-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9324022-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9324022-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9324022-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      13 PREDICATES      28 URIs      19 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9324022-B2 schema:about anzsrc-for:2746
2 schema:author Nff6696762323455186f8714d20654962
3 schema:citation sg:pub.10.1038/323533a0
4 https://doi.org/10.1016/j.neucom.2012.11.050
5 https://doi.org/10.1016/s0893-6080(05)80056-5
6 https://doi.org/10.1162/neco.2006.18.7.1527
7 schema:description <p id="p-0001" num="0000">Embodiments are directed towards classifying data using machine learning that may be incrementally refined based on expert input. Data provided to a deep learning model that may be trained based on a plurality of classifiers and sets of training data and/or testing data. If the number of classification errors exceeds a defined threshold classifiers may be modified based on data corresponding to observed classification errors. A fast learning model may be trained based on the modified classifiers, the data, and the data corresponding to the observed classification errors. And, another confidence value may be generated and associated with the classification of the data by the fast learning model. Report information may be generated based on a comparison result of the confidence value associated with the fast learning model and the confidence value associated with the deep learning model.</p>
8 schema:keywords classification
9 classification error
10 classifier
11 classifying
12 comparison
13 confidence
14 embodiment
15 expert input
16 machine
17 plurality
18 record
19 training data
20 schema:name Classifying data with deep learning neural records incrementally refined through expert input
21 schema:sameAs https://app.dimensions.ai/details/patent/US-9324022-B2
22 schema:sdDatePublished 2019-03-07T15:35
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N8ced4470369a4d93ac67b1b39893aff7
25 sgo:license sg:explorer/license/
26 sgo:sdDataset patents
27 rdf:type sgo:Patent
28 N1f785e40d97b415181130b32d9948017 rdf:first N2b26a577a2894851a47c8f8ba6b82e46
29 rdf:rest N895cc534efa94ef9a080e756f22202a6
30 N2b26a577a2894851a47c8f8ba6b82e46 schema:name Megan Ursula Hazen
31 rdf:type schema:Person
32 N341224af9ad04b30be1604dc2103aadb schema:name Tom Abeles
33 rdf:type schema:Person
34 N49a14cc43d0940fab33288b7ab069c0e rdf:first Nf5a37674e6d2457e81418309934ef370
35 rdf:rest N1f785e40d97b415181130b32d9948017
36 N895cc534efa94ef9a080e756f22202a6 rdf:first Ncda697b957984502898585052ab679d2
37 rdf:rest Ndab1ca9afa204cc0b481723dacd57a5b
38 N8ced4470369a4d93ac67b1b39893aff7 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N91ddef5b9bfc42f3b7bacd6c5d1654fe schema:name Alan McIntyre
41 rdf:type schema:Person
42 N98d11f1893ee46329a1787bebc2d4be1 schema:name David Russell Williams, Jr.
43 rdf:type schema:Person
44 Ncda697b957984502898585052ab679d2 schema:name Brigham Sterling Anderson
45 rdf:type schema:Person
46 Nd1585e4b331549e289e292380cbaf8ac rdf:first N341224af9ad04b30be1604dc2103aadb
47 rdf:rest rdf:nil
48 Ndab1ca9afa204cc0b481723dacd57a5b rdf:first N91ddef5b9bfc42f3b7bacd6c5d1654fe
49 rdf:rest Nd1585e4b331549e289e292380cbaf8ac
50 Nf5a37674e6d2457e81418309934ef370 schema:name Luke Robert Gutzwiller
51 rdf:type schema:Person
52 Nff6696762323455186f8714d20654962 rdf:first N98d11f1893ee46329a1787bebc2d4be1
53 rdf:rest N49a14cc43d0940fab33288b7ab069c0e
54 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
55 rdf:type schema:DefinedTerm
56 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
57 https://doi.org/10.1038/323533a0
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1016/j.neucom.2012.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025802159
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1016/s0893-6080(05)80056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014360644
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
64 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...