Measurement and comparison of immune diversity by high-throughput sequencing


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Stephen R. Quake , Joshua Weinstein , Ning Jiang , Daniel S. Fisher

ABSTRACT

A precise measurement of the immunological receptor diversity present in a sample is obtained by sequence analysis. Samples of interest are generally complex, comprising more than 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012 or more different sequences for a receptor of interest. Immunological receptors of interest include immunoglobulins, T cell antigen receptors, and major histocompatibility receptors. The specific composition of immunological receptor sequence variations in the sample can be recorded and output. The composition is useful for predictive, diagnostic and therapeutic methods relating to the immune capabilities and history of an individual. Such predictions and diagnoses are used to guide clinical decisions. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Stephen R. Quake", 
        "type": "Person"
      }, 
      {
        "name": "Joshua Weinstein", 
        "type": "Person"
      }, 
      {
        "name": "Ning Jiang", 
        "type": "Person"
      }, 
      {
        "name": "Daniel S. Fisher", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ni1166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001101345", 
          "https://doi.org/10.1038/ni1166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0105-2896.2004.00168.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001348045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-4141(199810)28:10<3268::aid-immu3268>3.0.co;2-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002782827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005954516", 
          "https://doi.org/10.1038/nbt1486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni1007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007108469", 
          "https://doi.org/10.1038/ni1007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(87)90066-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007935721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood.v99.11.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008562310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/gast.2000.20219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010996853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6286907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013262912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0308689100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013379284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaci.2007.05.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014217766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2009-04-217604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014830407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.9.081307.164359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015853776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1014277108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016290407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.9.11.1106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018456662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-065x.1998.tb01432.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020660878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0913939107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025470425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092924.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025925546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1996.0432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027675298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028337714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1747.1998.00072.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035517460", 
          "https://doi.org/10.1046/j.1523-1747.1998.00072.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.082099299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.115428.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038599692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0264-410x(03)00497-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039467403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1759(95)00091-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041412667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ydbio.2004.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041874338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041884975", 
          "https://doi.org/10.1038/nrg1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0909775106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042221024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2010-03-275859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044748547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1133470100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045398840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002510000255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045764084", 
          "https://doi.org/10.1007/s002510000255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002510000255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045764084", 
          "https://doi.org/10.1007/s002510000255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1474-9726.2011.00732.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047761601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/icb.1997.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050554928", 
          "https://doi.org/10.1038/icb.1997.68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genet.39.073003.110544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051266444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molimm.2007.12.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051275106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5375.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A precise measurement of the immunological receptor diversity present in a sample is obtained by sequence analysis. Samples of interest are generally complex, comprising more than 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012 or more different sequences for a receptor of interest. Immunological receptors of interest include immunoglobulins, T cell antigen receptors, and major histocompatibility receptors. The specific composition of immunological receptor sequence variations in the sample can be recorded and output. The composition is useful for predictive, diagnostic and therapeutic methods relating to the immune capabilities and history of an individual. Such predictions and diagnoses are used to guide clinical decisions.

", "id": "sg:patent.US-9290811-B2", "keywords": [ "measurement", "comparison", "diversity", "high-throughput sequencing", "precise measurement", "sample", "sequence analysis", "complex", "different sequence", "receptor", "immunoglobulin", "T-Cell Antigen Receptor", "histocompatibility", "specific composition", "sequence variation", "output", "composition", "diagnostic and therapeutic method", "capability", "history", "prediction", "diagnosise", "clinical decision" ], "name": "Measurement and comparison of immune diversity by high-throughput sequencing", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.168010.e", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9290811-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:30", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_0782263a.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9290811-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9290811-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9290811-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9290811-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      14 PREDICATES      74 URIs      30 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9290811-B2 schema:about anzsrc-for:3103
2 schema:author Ne196f652a9704da8b68fac801691ae96
3 schema:citation sg:pub.10.1007/s002510000255
4 sg:pub.10.1038/icb.1997.68
5 sg:pub.10.1038/nature03959
6 sg:pub.10.1038/nbt1486
7 sg:pub.10.1038/ni1007
8 sg:pub.10.1038/ni1166
9 sg:pub.10.1038/nrg1325
10 sg:pub.10.1046/j.1523-1747.1998.00072.x
11 https://doi.org/10.1002/(sici)1521-4141(199810)28:10<3268::aid-immu3268>3.0.co;2-f
12 https://doi.org/10.1006/abio.1996.0432
13 https://doi.org/10.1016/0022-1759(95)00091-n
14 https://doi.org/10.1016/0022-2836(81)90087-5
15 https://doi.org/10.1016/0092-8674(87)90066-3
16 https://doi.org/10.1016/j.jaci.2007.05.035
17 https://doi.org/10.1016/j.molimm.2007.12.018
18 https://doi.org/10.1016/j.ydbio.2004.04.004
19 https://doi.org/10.1016/s0264-410x(03)00497-3
20 https://doi.org/10.1053/gast.2000.20219
21 https://doi.org/10.1073/pnas.0308689100
22 https://doi.org/10.1073/pnas.082099299
23 https://doi.org/10.1073/pnas.0909775106
24 https://doi.org/10.1073/pnas.0913939107
25 https://doi.org/10.1073/pnas.1014277108
26 https://doi.org/10.1073/pnas.1133470100
27 https://doi.org/10.1093/bioinformatics/btp010
28 https://doi.org/10.1101/gr.092924.109
29 https://doi.org/10.1101/gr.115428.110
30 https://doi.org/10.1101/gr.6286907
31 https://doi.org/10.1101/gr.9.11.1106
32 https://doi.org/10.1111/j.0105-2896.2004.00168.x
33 https://doi.org/10.1111/j.1474-9726.2011.00732.x
34 https://doi.org/10.1111/j.1600-065x.1998.tb01432.x
35 https://doi.org/10.1126/science.281.5375.363
36 https://doi.org/10.1146/annurev.genet.39.073003.110544
37 https://doi.org/10.1146/annurev.genom.9.081307.164359
38 https://doi.org/10.1182/blood-2009-04-217604
39 https://doi.org/10.1182/blood-2010-03-275859
40 https://doi.org/10.1182/blood.v99.11.4087
41 schema:description <p id="p-0001" num="0000">A precise measurement of the immunological receptor diversity present in a sample is obtained by sequence analysis. Samples of interest are generally complex, comprising more than 10<sup>2</sup>, 10<sup>3</sup>, 10<sup>4</sup>, 10<sup>5</sup>, 10<sup>6</sup>, 10<sup>7</sup>, 10<sup>8</sup>, 10<sup>9</sup>, 10<sup>10</sup>, 10<sup>11</sup>, 10<sup>12 </sup>or more different sequences for a receptor of interest. Immunological receptors of interest include immunoglobulins, T cell antigen receptors, and major histocompatibility receptors. The specific composition of immunological receptor sequence variations in the sample can be recorded and output. The composition is useful for predictive, diagnostic and therapeutic methods relating to the immune capabilities and history of an individual. Such predictions and diagnoses are used to guide clinical decisions.</p>
42 schema:keywords T-Cell Antigen Receptor
43 capability
44 clinical decision
45 comparison
46 complex
47 composition
48 diagnosise
49 diagnostic and therapeutic method
50 different sequence
51 diversity
52 high-throughput sequencing
53 histocompatibility
54 history
55 immunoglobulin
56 measurement
57 output
58 precise measurement
59 prediction
60 receptor
61 sample
62 sequence analysis
63 sequence variation
64 specific composition
65 schema:name Measurement and comparison of immune diversity by high-throughput sequencing
66 schema:recipient https://www.grid.ac/institutes/grid.168010.e
67 schema:sameAs https://app.dimensions.ai/details/patent/US-9290811-B2
68 schema:sdDatePublished 2019-03-07T15:30
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nbd03f5960f5542f389a9ee0caa7b57f9
71 sgo:license sg:explorer/license/
72 sgo:sdDataset patents
73 rdf:type sgo:Patent
74 N0dfc15fdd80949dbb8b40bdc25f1d87d schema:name Ning Jiang
75 rdf:type schema:Person
76 N22786e004e8a41ab9832dcb767dfd739 schema:name Joshua Weinstein
77 rdf:type schema:Person
78 N3abcaf1357604094bbf1d5541d1b67df rdf:first N0dfc15fdd80949dbb8b40bdc25f1d87d
79 rdf:rest Nc6267822ea0a4f43b71edd07b4582746
80 N41dd7e73a2aa4135843893bed454ee74 schema:name Daniel S. Fisher
81 rdf:type schema:Person
82 N4a0e83bf02bd4886a249261b6a113409 schema:name Stephen R. Quake
83 rdf:type schema:Person
84 N62da3d930e7d4db1b18359c3273b9e63 rdf:first N22786e004e8a41ab9832dcb767dfd739
85 rdf:rest N3abcaf1357604094bbf1d5541d1b67df
86 Nbd03f5960f5542f389a9ee0caa7b57f9 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nc6267822ea0a4f43b71edd07b4582746 rdf:first N41dd7e73a2aa4135843893bed454ee74
89 rdf:rest rdf:nil
90 Ne196f652a9704da8b68fac801691ae96 rdf:first N4a0e83bf02bd4886a249261b6a113409
91 rdf:rest N62da3d930e7d4db1b18359c3273b9e63
92 anzsrc-for:3103 schema:inDefinedTermSet anzsrc-for:
93 rdf:type schema:DefinedTerm
94 sg:pub.10.1007/s002510000255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045764084
95 https://doi.org/10.1007/s002510000255
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/icb.1997.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050554928
98 https://doi.org/10.1038/icb.1997.68
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
101 https://doi.org/10.1038/nature03959
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
104 https://doi.org/10.1038/nbt1486
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/ni1007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007108469
107 https://doi.org/10.1038/ni1007
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/ni1166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001101345
110 https://doi.org/10.1038/ni1166
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nrg1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041884975
113 https://doi.org/10.1038/nrg1325
114 rdf:type schema:CreativeWork
115 sg:pub.10.1046/j.1523-1747.1998.00072.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035517460
116 https://doi.org/10.1046/j.1523-1747.1998.00072.x
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/(sici)1521-4141(199810)28:10<3268::aid-immu3268>3.0.co;2-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1002782827
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1006/abio.1996.0432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027675298
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0022-1759(95)00091-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1041412667
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0092-8674(87)90066-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007935721
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jaci.2007.05.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014217766
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.molimm.2007.12.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051275106
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ydbio.2004.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041874338
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0264-410x(03)00497-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039467403
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1053/gast.2000.20219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010996853
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1073/pnas.0308689100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013379284
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1073/pnas.082099299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994416
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.0909775106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042221024
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.0913939107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025470425
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.1014277108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016290407
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.1133470100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045398840
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/bioinformatics/btp010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028337714
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1101/gr.092924.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025925546
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1101/gr.115428.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038599692
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1101/gr.6286907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013262912
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1101/gr.9.11.1106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018456662
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.0105-2896.2004.00168.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001348045
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1474-9726.2011.00732.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047761601
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1600-065x.1998.tb01432.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020660878
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.281.5375.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561814
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1146/annurev.genet.39.073003.110544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051266444
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1146/annurev.genom.9.081307.164359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015853776
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1182/blood-2009-04-217604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014830407
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1182/blood-2010-03-275859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044748547
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1182/blood.v99.11.4087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008562310
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.168010.e schema:Organization
 




Preview window. Press ESC to close (or click here)


...