Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling


Ontology type: sgo:Patent     


Patent Info

DATE

2016-03-01T00:00

AUTHORS

Thomas Bruce Ferguson, JR. , Xin-Hua Hu , Cheng Chen

ABSTRACT

A non-invasive method for measuring blood flow in principal vessels of a heart of a subject is provided. The method includes illuminating a region of interest in the heart with a coherent light source, wherein the coherent light source has a wavelength of from about 600 nm to about 1100 nm; sequentially acquiring at least two speckle images of the region of interest in the heart during a fixed time period, wherein sequentially acquiring the at least two speckle images comprises acquiring the at least two speckle images in synchronization with motion of the heart of the subject; and electronically processing the at least two acquired speckle images based on the temporal variation of the pixel intensities in the at least two acquired speckle images to generate a laser speckle contrast imaging (LSCI) image and determine spatial distribution of blood flow rate in the principal vessels and quantify perfusion distribution in tissue in the region of interest in the heart from the LSCI image. More... »

Related SciGraph Publications

  • 2006-12. Laser speckle imaging of dynamic changes in flow during photodynamic therapy in LASERS IN MEDICAL SCIENCE
  • 1976-12. Velocity measurement of a diffuse object by using time-varying speckles in OPTICAL AND QUANTUM ELECTRONICS
  • 2004-12. Blood flow measurements in studies of macro- and microcirculation in BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE
  • 2001-03. Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle in JOURNAL OF CEREBRAL BLOOD FLOW & METABOLISM
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3048", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Thomas Bruce Ferguson, JR.", 
            "type": "Person"
          }, 
          {
            "name": "Xin-Hua Hu", 
            "type": "Person"
          }, 
          {
            "name": "Cheng Chen", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1460-9568.2004.03735.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000727993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archopht.121.2.235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000907001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.3582334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002672738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00620143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006932040", 
              "https://doi.org/10.1007/bf00620143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00620143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006932040", 
              "https://doi.org/10.1007/bf00620143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10103-006-0399-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007898658", 
              "https://doi.org/10.1007/s10103-006-0399-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10103-006-0399-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007898658", 
              "https://doi.org/10.1007/s10103-006-0399-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.195203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017098741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10517-005-0121-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018492722", 
              "https://doi.org/10.1007/s10517-005-0121-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0738-081x(95)00080-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020060432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lsm.21018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021552981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0030-4018(95)00042-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023129783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.2341196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024091034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0030-4018(81)90428-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033162436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0030-4018(81)90428-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033162436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circulationaha.104.520098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037032971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lsm.1900130205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037584596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/00004647-200103000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041470068", 
              "https://doi.org/10.1097/00004647-200103000-00002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-200103000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041470068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9149(97)89143-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042267601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/49/7/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059025488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2944.577331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061145347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.33.001070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065108632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.36.000144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065111599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josaa.25.002088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065162118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.11.003116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065182657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.11.003490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065182731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.003211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065189753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.013904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065191052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.013904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065191052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.22.001119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065217496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.25.001358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065219381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.25.001448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065219409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.27.001702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065220595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.31.001824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065223963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.31.003465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065224433"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03-01T00:00", 
        "description": "

    A non-invasive method for measuring blood flow in principal vessels of a heart of a subject is provided. The method includes illuminating a region of interest in the heart with a coherent light source, wherein the coherent light source has a wavelength of from about 600 nm to about 1100 nm; sequentially acquiring at least two speckle images of the region of interest in the heart during a fixed time period, wherein sequentially acquiring the at least two speckle images comprises acquiring the at least two speckle images in synchronization with motion of the heart of the subject; and electronically processing the at least two acquired speckle images based on the temporal variation of the pixel intensities in the at least two acquired speckle images to generate a laser speckle contrast imaging (LSCI) image and determine spatial distribution of blood flow rate in the principal vessels and quantify perfusion distribution in tissue in the region of interest in the heart from the LSCI image.

    ", "id": "sg:patent.US-9271658-B2", "keywords": [ "method", "computer", "determination", "blood flow distribution", "imaging technique", "hemodynamics", "non-invasive method", "blood flow", "principal", "heart", "coherent light source", "wherein", "wavelength", "nm", "speckle", "time period", "synchronization", "motion", "processing", "temporal variation", "intensity", "contrast", "spatial distribution", "blood flow rate", "distribution", "tissue" ], "name": "Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.255364.3", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9271658-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:17", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01199.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9271658-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9271658-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9271658-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9271658-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      15 PREDICATES      72 URIs      34 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-9271658-B2 schema:about anzsrc-for:3048
    2 schema:author Nf1bfa1518af64b9ea94cb35dee4ec1e8
    3 schema:citation sg:pub.10.1007/bf00620143
    4 sg:pub.10.1007/s10103-006-0399-5
    5 sg:pub.10.1007/s10517-005-0121-9
    6 sg:pub.10.1097/00004647-200103000-00002
    7 https://doi.org/10.1001/archopht.121.2.235
    8 https://doi.org/10.1002/lsm.1900130205
    9 https://doi.org/10.1002/lsm.21018
    10 https://doi.org/10.1016/0030-4018(81)90428-4
    11 https://doi.org/10.1016/0030-4018(95)00042-7
    12 https://doi.org/10.1016/0738-081x(95)00080-y
    13 https://doi.org/10.1016/s0002-9149(97)89143-6
    14 https://doi.org/10.1088/0031-9155/49/7/020
    15 https://doi.org/10.1097/00004647-200103000-00002
    16 https://doi.org/10.1109/2944.577331
    17 https://doi.org/10.1111/j.1460-9568.2004.03735.x
    18 https://doi.org/10.1117/1.2341196
    19 https://doi.org/10.1117/1.3582334
    20 https://doi.org/10.1117/12.195203
    21 https://doi.org/10.1161/circulationaha.104.520098
    22 https://doi.org/10.1364/ao.33.001070
    23 https://doi.org/10.1364/ao.36.000144
    24 https://doi.org/10.1364/josaa.25.002088
    25 https://doi.org/10.1364/oe.11.003116
    26 https://doi.org/10.1364/oe.11.003490
    27 https://doi.org/10.1364/oe.17.003211
    28 https://doi.org/10.1364/oe.17.013904
    29 https://doi.org/10.1364/ol.22.001119
    30 https://doi.org/10.1364/ol.25.001358
    31 https://doi.org/10.1364/ol.25.001448
    32 https://doi.org/10.1364/ol.27.001702
    33 https://doi.org/10.1364/ol.31.001824
    34 https://doi.org/10.1364/ol.31.003465
    35 schema:datePublished 2016-03-01T00:00
    36 schema:description <p id="p-0001" num="0000">A non-invasive method for measuring blood flow in principal vessels of a heart of a subject is provided. The method includes illuminating a region of interest in the heart with a coherent light source, wherein the coherent light source has a wavelength of from about 600 nm to about 1100 nm; sequentially acquiring at least two speckle images of the region of interest in the heart during a fixed time period, wherein sequentially acquiring the at least two speckle images comprises acquiring the at least two speckle images in synchronization with motion of the heart of the subject; and electronically processing the at least two acquired speckle images based on the temporal variation of the pixel intensities in the at least two acquired speckle images to generate a laser speckle contrast imaging (LSCI) image and determine spatial distribution of blood flow rate in the principal vessels and quantify perfusion distribution in tissue in the region of interest in the heart from the LSCI image.</p>
    37 schema:keywords blood flow
    38 blood flow distribution
    39 blood flow rate
    40 coherent light source
    41 computer
    42 contrast
    43 determination
    44 distribution
    45 heart
    46 hemodynamics
    47 imaging technique
    48 intensity
    49 method
    50 motion
    51 nm
    52 non-invasive method
    53 principal
    54 processing
    55 spatial distribution
    56 speckle
    57 synchronization
    58 temporal variation
    59 time period
    60 tissue
    61 wavelength
    62 wherein
    63 schema:name Methods, systems and computer program products for non-invasive determination of blood flow distribution using speckle imaging techniques and hemodynamic modeling
    64 schema:recipient https://www.grid.ac/institutes/grid.255364.3
    65 schema:sameAs https://app.dimensions.ai/details/patent/US-9271658-B2
    66 schema:sdDatePublished 2019-04-18T10:17
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N976afd3ba0f34811a785d621ccdf0909
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset patents
    71 rdf:type sgo:Patent
    72 N48c378303cee4ee28b49398f713c1974 rdf:first Nc0aba3c5eb1c4ae6aac236b4acece308
    73 rdf:rest Nd200dfb7661c42d38791d8523d993c26
    74 N65fad720be5745d2a75914577b8cf4b8 schema:name Thomas Bruce Ferguson, JR.
    75 rdf:type schema:Person
    76 N976afd3ba0f34811a785d621ccdf0909 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Nc0aba3c5eb1c4ae6aac236b4acece308 schema:name Xin-Hua Hu
    79 rdf:type schema:Person
    80 Nd200dfb7661c42d38791d8523d993c26 rdf:first Neae1a02007fb472b80cb9d285099adbf
    81 rdf:rest rdf:nil
    82 Neae1a02007fb472b80cb9d285099adbf schema:name Cheng Chen
    83 rdf:type schema:Person
    84 Nf1bfa1518af64b9ea94cb35dee4ec1e8 rdf:first N65fad720be5745d2a75914577b8cf4b8
    85 rdf:rest N48c378303cee4ee28b49398f713c1974
    86 anzsrc-for:3048 schema:inDefinedTermSet anzsrc-for:
    87 rdf:type schema:DefinedTerm
    88 sg:pub.10.1007/bf00620143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006932040
    89 https://doi.org/10.1007/bf00620143
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s10103-006-0399-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007898658
    92 https://doi.org/10.1007/s10103-006-0399-5
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s10517-005-0121-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018492722
    95 https://doi.org/10.1007/s10517-005-0121-9
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1097/00004647-200103000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041470068
    98 https://doi.org/10.1097/00004647-200103000-00002
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1001/archopht.121.2.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000907001
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1002/lsm.1900130205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037584596
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1002/lsm.21018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021552981
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/0030-4018(81)90428-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033162436
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0030-4018(95)00042-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023129783
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/0738-081x(95)00080-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020060432
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0002-9149(97)89143-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042267601
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1088/0031-9155/49/7/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025488
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1097/00004647-200103000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041470068
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1109/2944.577331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061145347
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1111/j.1460-9568.2004.03735.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000727993
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1117/1.2341196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024091034
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1117/1.3582334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002672738
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1117/12.195203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017098741
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1161/circulationaha.104.520098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037032971
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1364/ao.33.001070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065108632
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1364/ao.36.000144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065111599
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1364/josaa.25.002088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065162118
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1364/oe.11.003116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182657
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1364/oe.11.003490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182731
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1364/oe.17.003211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065189753
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1364/oe.17.013904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065191052
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1364/ol.22.001119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217496
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1364/ol.25.001358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219381
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1364/ol.25.001448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219409
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1364/ol.27.001702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220595
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1364/ol.31.001824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223963
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1364/ol.31.003465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224433
    155 rdf:type schema:CreativeWork
    156 https://www.grid.ac/institutes/grid.255364.3 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...