Nanogap device with capped nanowire structures


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Yann A. N. Astier , Jingwei Bai , Satyavolu S. Papa Rao , Kathleen B. Reuter , Joshua T. Smith

ABSTRACT

An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Yann A. N. Astier", 
        "type": "Person"
      }, 
      {
        "name": "Jingwei Bai", 
        "type": "Person"
      }, 
      {
        "name": "Satyavolu S. Papa Rao", 
        "type": "Person"
      }, 
      {
        "name": "Kathleen B. Reuter", 
        "type": "Person"
      }, 
      {
        "name": "Joshua T. Smith", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ja064274j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008050084", 
          "https://doi.org/10.1038/nnano.2010.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/biot.201200153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010262377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010521124", 
          "https://doi.org/10.1038/nature07719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.9.081307.164359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015853776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1001185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016095622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.24.13770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016336761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0726205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022633772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b805433a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl071890k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024637030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp108865q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030375216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030422156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030841250", 
          "https://doi.org/10.1038/nmat941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl200147x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037503754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200601191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038208071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.041814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038897645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.3.1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041054957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043196688", 
          "https://doi.org/10.1038/nmat1967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9029237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043544194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045265151", 
          "https://doi.org/10.1038/35084037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103873a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046238968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la901271c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056164986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0716451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217387"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.

", "id": "sg:patent.US-9188578-B2", "keywords": [ "nanowires", "retraction", "surface", "dielectric", "gap", "nanodevices", "recognition", "sequencing", "mobility", "pin", "confines", "structural stability", "embodiment", "leakage", "solution" ], "name": "Nanogap device with capped nanowire structures", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.471366.1", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.410484.d", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9188578-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:34", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_962f20a5.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9188578-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9188578-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9188578-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9188578-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      14 PREDICATES      56 URIs      22 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9188578-B2 schema:about anzsrc-for:2921
2 schema:author N6046fc0f984940618682b095d0063c97
3 schema:citation sg:pub.10.1038/35084037
4 sg:pub.10.1038/nature03959
5 sg:pub.10.1038/nature07719
6 sg:pub.10.1038/nmat1967
7 sg:pub.10.1038/nmat941
8 sg:pub.10.1038/nnano.2010.42
9 https://doi.org/10.1002/adma.200601191
10 https://doi.org/10.1002/biot.201200153
11 https://doi.org/10.1021/ja064274j
12 https://doi.org/10.1021/jp108865q
13 https://doi.org/10.1021/la901271c
14 https://doi.org/10.1021/nl0716451
15 https://doi.org/10.1021/nl071890k
16 https://doi.org/10.1021/nl0726205
17 https://doi.org/10.1021/nl1001185
18 https://doi.org/10.1021/nl103873a
19 https://doi.org/10.1021/nl200147x
20 https://doi.org/10.1021/nl9029237
21 https://doi.org/10.1039/b805433a
22 https://doi.org/10.1073/pnas.74.12.5463
23 https://doi.org/10.1073/pnas.93.24.13770
24 https://doi.org/10.1073/pnas.97.3.1079
25 https://doi.org/10.1126/science.1102896
26 https://doi.org/10.1126/science.1117389
27 https://doi.org/10.1126/science.1150427
28 https://doi.org/10.1146/annurev.genom.9.081307.164359
29 https://doi.org/10.1529/biophysj.104.041814
30 schema:description <p id="p-0001" num="0000">An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.</p>
31 schema:keywords confines
32 dielectric
33 embodiment
34 gap
35 leakage
36 mobility
37 nanodevices
38 nanowires
39 pin
40 recognition
41 retraction
42 sequencing
43 solution
44 structural stability
45 surface
46 schema:name Nanogap device with capped nanowire structures
47 schema:recipient https://www.grid.ac/institutes/grid.410484.d
48 https://www.grid.ac/institutes/grid.471366.1
49 schema:sameAs https://app.dimensions.ai/details/patent/US-9188578-B2
50 schema:sdDatePublished 2019-03-07T15:34
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N4600d111eb4c496782d1af9b40e9d8a4
53 sgo:license sg:explorer/license/
54 sgo:sdDataset patents
55 rdf:type sgo:Patent
56 N191085ae2bd4483caa430095c781c28e rdf:first N888edc0c7815423ab965671b08dbe6d9
57 rdf:rest N9c8057e238c443388b073130ed450d17
58 N4600d111eb4c496782d1af9b40e9d8a4 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N4d199fb352844075aee9c6f5ebc9141f rdf:first N6cb618279ac240ae927ed4c43c6890e8
61 rdf:rest rdf:nil
62 N6046fc0f984940618682b095d0063c97 rdf:first Nbee882a5604d4ea9a705c0e9c3505f95
63 rdf:rest N191085ae2bd4483caa430095c781c28e
64 N6cb618279ac240ae927ed4c43c6890e8 schema:name Joshua T. Smith
65 rdf:type schema:Person
66 N7ebbc283668c4f63b55cdc0a4d3b6f2e rdf:first N91dc09e405e942d7a6287fc78612fd44
67 rdf:rest N4d199fb352844075aee9c6f5ebc9141f
68 N8859941983c2412caf2ad7d56f8ecbad schema:name Satyavolu S. Papa Rao
69 rdf:type schema:Person
70 N888edc0c7815423ab965671b08dbe6d9 schema:name Jingwei Bai
71 rdf:type schema:Person
72 N91dc09e405e942d7a6287fc78612fd44 schema:name Kathleen B. Reuter
73 rdf:type schema:Person
74 N9c8057e238c443388b073130ed450d17 rdf:first N8859941983c2412caf2ad7d56f8ecbad
75 rdf:rest N7ebbc283668c4f63b55cdc0a4d3b6f2e
76 Nbee882a5604d4ea9a705c0e9c3505f95 schema:name Yann A. N. Astier
77 rdf:type schema:Person
78 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
79 rdf:type schema:DefinedTerm
80 sg:pub.10.1038/35084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
81 https://doi.org/10.1038/35084037
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
84 https://doi.org/10.1038/nature03959
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
87 https://doi.org/10.1038/nature07719
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/nmat1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196688
90 https://doi.org/10.1038/nmat1967
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/nmat941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030841250
93 https://doi.org/10.1038/nmat941
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nnano.2010.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008050084
96 https://doi.org/10.1038/nnano.2010.42
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/adma.200601191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038208071
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/biot.201200153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010262377
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1021/ja064274j schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661455
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/jp108865q schema:sameAs https://app.dimensions.ai/details/publication/pub.1030375216
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/la901271c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056164986
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1021/nl0716451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217387
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1021/nl071890k schema:sameAs https://app.dimensions.ai/details/publication/pub.1024637030
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1021/nl0726205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022633772
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1021/nl1001185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016095622
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/nl103873a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046238968
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/nl200147x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037503754
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/nl9029237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043544194
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1039/b805433a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495458
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1073/pnas.93.24.13770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336761
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1073/pnas.97.3.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041054957
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1126/science.1150427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030422156
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1146/annurev.genom.9.081307.164359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015853776
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1529/biophysj.104.041814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038897645
139 rdf:type schema:CreativeWork
140 https://www.grid.ac/institutes/grid.410484.d schema:Organization
141 https://www.grid.ac/institutes/grid.471366.1 schema:Organization
 




Preview window. Press ESC to close (or click here)


...