Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Yann Astier , Jingwei Bai , Michael A. Guillorn , Satyavolu S. Papa Rao , Joshua T. Smith

ABSTRACT

A technique is provided for manufacturing a nanogap in a nanodevice. An oxide is disposed on a wafer. A nanowire is disposed on the oxide. A helium ion beam is applied to cut the nanowire into a first nanowire part and a second nanowire part which forms the nanogap in the nanodevice. Applying the helium ion beam to cut the nanogap forms a signature of nanowire material in proximity to at least one opening of the nanogap. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Yann Astier", 
        "type": "Person"
      }, 
      {
        "name": "Jingwei Bai", 
        "type": "Person"
      }, 
      {
        "name": "Michael A. Guillorn", 
        "type": "Person"
      }, 
      {
        "name": "Satyavolu S. Papa Rao", 
        "type": "Person"
      }, 
      {
        "name": "Joshua T. Smith", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000072844", 
          "https://doi.org/10.1038/nature05498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/17/3/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000374893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja064274j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1084564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002941735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0230489100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004751048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008050084", 
          "https://doi.org/10.1038/nnano.2010.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/biot.201200153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010262377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010521124", 
          "https://doi.org/10.1038/nature07719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1001185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016095622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.24.13770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016336761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0601076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017504546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0726205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022633772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-008-1995-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022726570", 
          "https://doi.org/10.1007/s00216-008-1995-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-008-1995-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022726570", 
          "https://doi.org/10.1007/s00216-008-1995-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b805433a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl071890k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024637030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(99)77153-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030222196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp108865q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030375216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030422156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030841250", 
          "https://doi.org/10.1038/nmat941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037155475", 
          "https://doi.org/10.1038/nbt.1495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl200147x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037503754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200601191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038208071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.041814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038897645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.3.1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041054957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9029237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043544194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la102671g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045232229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045265151", 
          "https://doi.org/10.1038/35084037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103873a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046238968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la901271c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056164986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0716451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.431.0127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063182411"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A technique is provided for manufacturing a nanogap in a nanodevice. An oxide is disposed on a wafer. A nanowire is disposed on the oxide. A helium ion beam is applied to cut the nanowire into a first nanowire part and a second nanowire part which forms the nanogap in the nanodevice. Applying the helium ion beam to cut the nanogap forms a signature of nanowire material in proximity to at least one opening of the nanogap.

", "id": "sg:patent.US-9182369-B2", "keywords": [ "sub-nanometer", "recognition", "technique", "manufacturing", "nanodevices", "oxide", "wafer", "nanowires", "ion beam", "signature", "proximity", "opening" ], "name": "Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.471366.1", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.410484.d", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9182369-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:34", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_962f20a5.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9182369-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9182369-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9182369-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9182369-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      14 PREDICATES      61 URIs      19 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9182369-B2 schema:about anzsrc-for:2921
2 schema:author N8da32e0665de48b2b4e922996e1b2281
3 schema:citation sg:pub.10.1007/s00216-008-1995-y
4 sg:pub.10.1038/35084037
5 sg:pub.10.1038/nature03959
6 sg:pub.10.1038/nature05498
7 sg:pub.10.1038/nature07719
8 sg:pub.10.1038/nbt.1495
9 sg:pub.10.1038/nmat941
10 sg:pub.10.1038/nnano.2010.42
11 https://doi.org/10.1002/adma.200601191
12 https://doi.org/10.1002/biot.201200153
13 https://doi.org/10.1016/s0006-3495(99)77153-5
14 https://doi.org/10.1021/ja064274j
15 https://doi.org/10.1021/jp108865q
16 https://doi.org/10.1021/la102671g
17 https://doi.org/10.1021/la901271c
18 https://doi.org/10.1021/nl0601076
19 https://doi.org/10.1021/nl0716451
20 https://doi.org/10.1021/nl071890k
21 https://doi.org/10.1021/nl0726205
22 https://doi.org/10.1021/nl1001185
23 https://doi.org/10.1021/nl103873a
24 https://doi.org/10.1021/nl200147x
25 https://doi.org/10.1021/nl9029237
26 https://doi.org/10.1039/b805433a
27 https://doi.org/10.1073/pnas.0230489100
28 https://doi.org/10.1073/pnas.74.12.5463
29 https://doi.org/10.1073/pnas.93.24.13770
30 https://doi.org/10.1073/pnas.97.3.1079
31 https://doi.org/10.1088/0957-4484/17/3/002
32 https://doi.org/10.1126/science.1084564
33 https://doi.org/10.1126/science.1102896
34 https://doi.org/10.1126/science.1117389
35 https://doi.org/10.1126/science.1150427
36 https://doi.org/10.1147/rd.431.0127
37 https://doi.org/10.1529/biophysj.104.041814
38 schema:description <p id="p-0001" num="0000">A technique is provided for manufacturing a nanogap in a nanodevice. An oxide is disposed on a wafer. A nanowire is disposed on the oxide. A helium ion beam is applied to cut the nanowire into a first nanowire part and a second nanowire part which forms the nanogap in the nanodevice. Applying the helium ion beam to cut the nanogap forms a signature of nanowire material in proximity to at least one opening of the nanogap.</p>
39 schema:keywords ion beam
40 manufacturing
41 nanodevices
42 nanowires
43 opening
44 oxide
45 proximity
46 recognition
47 signature
48 sub-nanometer
49 technique
50 wafer
51 schema:name Manufacturable sub-3 nanometer palladium gap devices for fixed electrode tunneling recognition
52 schema:recipient https://www.grid.ac/institutes/grid.410484.d
53 https://www.grid.ac/institutes/grid.471366.1
54 schema:sameAs https://app.dimensions.ai/details/patent/US-9182369-B2
55 schema:sdDatePublished 2019-03-07T15:34
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Ne041cd9444d74de7a5fa6c52d0cbb6ba
58 sgo:license sg:explorer/license/
59 sgo:sdDataset patents
60 rdf:type sgo:Patent
61 N0350fd203666454294bd092771152003 schema:name Satyavolu S. Papa Rao
62 rdf:type schema:Person
63 N1c15d38f2b9f4b10b5d4672bca9b4029 schema:name Jingwei Bai
64 rdf:type schema:Person
65 N5dc9108174024164bc4261de9ca21dae schema:name Michael A. Guillorn
66 rdf:type schema:Person
67 N775fa5e151aa4ff0a831e6ec74f55045 schema:name Joshua T. Smith
68 rdf:type schema:Person
69 N83768f5f11bc4c2a86e421473c886578 schema:name Yann Astier
70 rdf:type schema:Person
71 N88a320938e8840e1a3e54339f1cb3342 rdf:first N775fa5e151aa4ff0a831e6ec74f55045
72 rdf:rest rdf:nil
73 N8da32e0665de48b2b4e922996e1b2281 rdf:first N83768f5f11bc4c2a86e421473c886578
74 rdf:rest N9ddd7b5dd1014e80b6dfd729ea03a16a
75 N9ddd7b5dd1014e80b6dfd729ea03a16a rdf:first N1c15d38f2b9f4b10b5d4672bca9b4029
76 rdf:rest Neb14a9cb4710446faf2902886dd4cb6d
77 Nd29637de3ed048f5a4a7ba135f363aa7 rdf:first N0350fd203666454294bd092771152003
78 rdf:rest N88a320938e8840e1a3e54339f1cb3342
79 Ne041cd9444d74de7a5fa6c52d0cbb6ba schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Neb14a9cb4710446faf2902886dd4cb6d rdf:first N5dc9108174024164bc4261de9ca21dae
82 rdf:rest Nd29637de3ed048f5a4a7ba135f363aa7
83 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
84 rdf:type schema:DefinedTerm
85 sg:pub.10.1007/s00216-008-1995-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022726570
86 https://doi.org/10.1007/s00216-008-1995-y
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/35084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
89 https://doi.org/10.1038/35084037
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
92 https://doi.org/10.1038/nature03959
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/nature05498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072844
95 https://doi.org/10.1038/nature05498
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
98 https://doi.org/10.1038/nature07719
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/nbt.1495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037155475
101 https://doi.org/10.1038/nbt.1495
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nmat941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030841250
104 https://doi.org/10.1038/nmat941
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nnano.2010.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008050084
107 https://doi.org/10.1038/nnano.2010.42
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/adma.200601191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038208071
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/biot.201200153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010262377
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0006-3495(99)77153-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030222196
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ja064274j schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661455
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/jp108865q schema:sameAs https://app.dimensions.ai/details/publication/pub.1030375216
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/la102671g schema:sameAs https://app.dimensions.ai/details/publication/pub.1045232229
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/la901271c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056164986
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/nl0601076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017504546
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/nl0716451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217387
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/nl071890k schema:sameAs https://app.dimensions.ai/details/publication/pub.1024637030
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/nl0726205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022633772
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/nl1001185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016095622
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/nl103873a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046238968
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/nl200147x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037503754
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/nl9029237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043544194
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1039/b805433a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495458
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.0230489100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004751048
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.93.24.13770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336761
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1073/pnas.97.3.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041054957
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/0957-4484/17/3/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000374893
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.1084564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002941735
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1150427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030422156
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1147/rd.431.0127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182411
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1529/biophysj.104.041814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038897645
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.410484.d schema:Organization
164 https://www.grid.ac/institutes/grid.471366.1 schema:Organization
 




Preview window. Press ESC to close (or click here)


...