Ontology type: sgo:Patent
N/A
AUTHORSOnur C. Hamsici
ABSTRACTIn general, techniques are described for performing a vocabulary-based visual search using multi-resolution feature descriptors. A device may comprise one or more processors configured to perform the techniques. The one or more processors may to apply a partitioning algorithm to a first subset of target feature descriptors to determine a first classifying data structure to be used when performing a visual search with respect to a query feature descriptor. The one or more processors may then apply the partitioning algorithm to a second subset of the target feature descriptors to determine a second classifying data structure to be used when performing the visual search with respect to the same query feature descriptor. More... »
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"type": "DefinedTerm"
}
],
"author": [
{
"name": "Onur C. Hamsici",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00058655",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002929950",
"https://doi.org/10.1007/bf00058655"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00058655",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002929950",
"https://doi.org/10.1007/bf00058655"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpami.2004.32",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061742717"
],
"type": "CreativeWork"
}
],
"description": "In general, techniques are described for performing a vocabulary-based visual search using multi-resolution feature descriptors. A device may comprise one or more processors configured to perform the techniques. The one or more processors may to apply a partitioning algorithm to a first subset of target feature descriptors to determine a first classifying data structure to be used when performing a visual search with respect to a query feature descriptor. The one or more processors may then apply the partitioning algorithm to a second subset of the target feature descriptors to determine a second classifying data structure to be used when performing the visual search with respect to the same query feature descriptor.
",
"id": "sg:patent.US-9117144-B2",
"keywords": [
"visual search",
"multi-resolution",
"technique",
"Equipment and Supply",
"processor",
"partitioning",
"subset",
"feature",
"data structure",
"respect"
],
"name": "Performing vocabulary-based visual search using multi-resolution feature descriptors",
"recipient": [
{
"id": "https://www.grid.ac/institutes/grid.430388.4",
"type": "Organization"
}
],
"sameAs": [
"https://app.dimensions.ai/details/patent/US-9117144-B2"
],
"sdDataset": "patents",
"sdDatePublished": "2019-03-07T15:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_2d2c25e7.jsonl",
"type": "Patent"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9117144-B2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9117144-B2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9117144-B2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9117144-B2'
This table displays all metadata directly associated to this object as RDF triples.
38 TRIPLES
14 PREDICATES
25 URIs
17 LITERALS
2 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:patent.US-9117144-B2 | schema:about | anzsrc-for:2746 |
2 | ″ | schema:author | Nefef2cfa784e4b7487720a7853281436 |
3 | ″ | schema:citation | sg:pub.10.1007/bf00058655 |
4 | ″ | ″ | https://doi.org/10.1109/tpami.2004.32 |
5 | ″ | schema:description | <p id="p-0001" num="0000">In general, techniques are described for performing a vocabulary-based visual search using multi-resolution feature descriptors. A device may comprise one or more processors configured to perform the techniques. The one or more processors may to apply a partitioning algorithm to a first subset of target feature descriptors to determine a first classifying data structure to be used when performing a visual search with respect to a query feature descriptor. The one or more processors may then apply the partitioning algorithm to a second subset of the target feature descriptors to determine a second classifying data structure to be used when performing the visual search with respect to the same query feature descriptor.</p> |
6 | ″ | schema:keywords | Equipment and Supply |
7 | ″ | ″ | data structure |
8 | ″ | ″ | feature |
9 | ″ | ″ | multi-resolution |
10 | ″ | ″ | partitioning |
11 | ″ | ″ | processor |
12 | ″ | ″ | respect |
13 | ″ | ″ | subset |
14 | ″ | ″ | technique |
15 | ″ | ″ | visual search |
16 | ″ | schema:name | Performing vocabulary-based visual search using multi-resolution feature descriptors |
17 | ″ | schema:recipient | https://www.grid.ac/institutes/grid.430388.4 |
18 | ″ | schema:sameAs | https://app.dimensions.ai/details/patent/US-9117144-B2 |
19 | ″ | schema:sdDatePublished | 2019-03-07T15:32 |
20 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
21 | ″ | schema:sdPublisher | N90b001bf3eeb423cb40d34d281f978d3 |
22 | ″ | sgo:license | sg:explorer/license/ |
23 | ″ | sgo:sdDataset | patents |
24 | ″ | rdf:type | sgo:Patent |
25 | N856e97d435114d099f3a1220b2b769d3 | schema:name | Onur C. Hamsici |
26 | ″ | rdf:type | schema:Person |
27 | N90b001bf3eeb423cb40d34d281f978d3 | schema:name | Springer Nature - SN SciGraph project |
28 | ″ | rdf:type | schema:Organization |
29 | Nefef2cfa784e4b7487720a7853281436 | rdf:first | N856e97d435114d099f3a1220b2b769d3 |
30 | ″ | rdf:rest | rdf:nil |
31 | anzsrc-for:2746 | schema:inDefinedTermSet | anzsrc-for: |
32 | ″ | rdf:type | schema:DefinedTerm |
33 | sg:pub.10.1007/bf00058655 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002929950 |
34 | ″ | ″ | https://doi.org/10.1007/bf00058655 |
35 | ″ | rdf:type | schema:CreativeWork |
36 | https://doi.org/10.1109/tpami.2004.32 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1061742717 |
37 | ″ | rdf:type | schema:CreativeWork |
38 | https://www.grid.ac/institutes/grid.430388.4 | ″ | schema:Organization |