Performing vocabulary-based visual search using multi-resolution feature descriptors


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Onur C. Hamsici

ABSTRACT

In general, techniques are described for performing a vocabulary-based visual search using multi-resolution feature descriptors. A device may comprise one or more processors configured to perform the techniques. The one or more processors may to apply a partitioning algorithm to a first subset of target feature descriptors to determine a first classifying data structure to be used when performing a visual search with respect to a query feature descriptor. The one or more processors may then apply the partitioning algorithm to a second subset of the target feature descriptors to determine a second classifying data structure to be used when performing the visual search with respect to the same query feature descriptor. More... »

Related SciGraph Publications

  • 1996-08. Bagging predictors in MACHINE LEARNING
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Onur C. Hamsici", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2004.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742717"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    In general, techniques are described for performing a vocabulary-based visual search using multi-resolution feature descriptors. A device may comprise one or more processors configured to perform the techniques. The one or more processors may to apply a partitioning algorithm to a first subset of target feature descriptors to determine a first classifying data structure to be used when performing a visual search with respect to a query feature descriptor. The one or more processors may then apply the partitioning algorithm to a second subset of the target feature descriptors to determine a second classifying data structure to be used when performing the visual search with respect to the same query feature descriptor.

    ", "id": "sg:patent.US-9117144-B2", "keywords": [ "visual search", "multi-resolution", "technique", "Equipment and Supply", "processor", "partitioning", "subset", "feature", "data structure", "respect" ], "name": "Performing vocabulary-based visual search using multi-resolution feature descriptors", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.430388.4", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9117144-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:32", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_2d2c25e7.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9117144-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9117144-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9117144-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9117144-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    38 TRIPLES      14 PREDICATES      25 URIs      17 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-9117144-B2 schema:about anzsrc-for:2746
    2 schema:author Nefef2cfa784e4b7487720a7853281436
    3 schema:citation sg:pub.10.1007/bf00058655
    4 https://doi.org/10.1109/tpami.2004.32
    5 schema:description <p id="p-0001" num="0000">In general, techniques are described for performing a vocabulary-based visual search using multi-resolution feature descriptors. A device may comprise one or more processors configured to perform the techniques. The one or more processors may to apply a partitioning algorithm to a first subset of target feature descriptors to determine a first classifying data structure to be used when performing a visual search with respect to a query feature descriptor. The one or more processors may then apply the partitioning algorithm to a second subset of the target feature descriptors to determine a second classifying data structure to be used when performing the visual search with respect to the same query feature descriptor.</p>
    6 schema:keywords Equipment and Supply
    7 data structure
    8 feature
    9 multi-resolution
    10 partitioning
    11 processor
    12 respect
    13 subset
    14 technique
    15 visual search
    16 schema:name Performing vocabulary-based visual search using multi-resolution feature descriptors
    17 schema:recipient https://www.grid.ac/institutes/grid.430388.4
    18 schema:sameAs https://app.dimensions.ai/details/patent/US-9117144-B2
    19 schema:sdDatePublished 2019-03-07T15:32
    20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    21 schema:sdPublisher N90b001bf3eeb423cb40d34d281f978d3
    22 sgo:license sg:explorer/license/
    23 sgo:sdDataset patents
    24 rdf:type sgo:Patent
    25 N856e97d435114d099f3a1220b2b769d3 schema:name Onur C. Hamsici
    26 rdf:type schema:Person
    27 N90b001bf3eeb423cb40d34d281f978d3 schema:name Springer Nature - SN SciGraph project
    28 rdf:type schema:Organization
    29 Nefef2cfa784e4b7487720a7853281436 rdf:first N856e97d435114d099f3a1220b2b769d3
    30 rdf:rest rdf:nil
    31 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    32 rdf:type schema:DefinedTerm
    33 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    34 https://doi.org/10.1007/bf00058655
    35 rdf:type schema:CreativeWork
    36 https://doi.org/10.1109/tpami.2004.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742717
    37 rdf:type schema:CreativeWork
    38 https://www.grid.ac/institutes/grid.430388.4 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...