Nanogap device with capped nanowire structures


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Yann A. N. Astier , Jingwei Bai , Satyavolu S. Papa Rao , Kathleen B. Reuter , Joshua T. Smith

ABSTRACT

An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Yann A. N. Astier", 
        "type": "Person"
      }, 
      {
        "name": "Jingwei Bai", 
        "type": "Person"
      }, 
      {
        "name": "Satyavolu S. Papa Rao", 
        "type": "Person"
      }, 
      {
        "name": "Kathleen B. Reuter", 
        "type": "Person"
      }, 
      {
        "name": "Joshua T. Smith", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000072844", 
          "https://doi.org/10.1038/nature05498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/17/3/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000374893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja064274j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1084564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002941735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0230489100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004751048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008050084", 
          "https://doi.org/10.1038/nnano.2010.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/biot.201200153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010262377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010521124", 
          "https://doi.org/10.1038/nature07719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1001185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016095622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.24.13770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016336761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0601076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017504546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0726205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022633772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-008-1995-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022726570", 
          "https://doi.org/10.1007/s00216-008-1995-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-008-1995-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022726570", 
          "https://doi.org/10.1007/s00216-008-1995-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b805433a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024495458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl071890k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024637030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.12.5463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025360556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(99)77153-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030222196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp108865q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030375216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030422156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030841250", 
          "https://doi.org/10.1038/nmat941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037155475", 
          "https://doi.org/10.1038/nbt.1495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl200147x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037503754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200601191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038208071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.104.041814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038897645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.3.1079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041054957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9029237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043544194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la102671g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045232229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045265151", 
          "https://doi.org/10.1038/35084037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl103873a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046238968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la901271c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056164986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0716451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.431.0127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063182411"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.

", "id": "sg:patent.US-9097698-B2", "keywords": [ "nanowires", "retraction", "surface", "dielectric", "gap", "nanodevices", "recognition", "sequencing", "mobility", "pin", "confines", "structural stability", "embodiment", "leakage", "solution" ], "name": "Nanogap device with capped nanowire structures", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.471366.1", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.410484.d", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9097698-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_0db08f31.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9097698-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9097698-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9097698-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9097698-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      14 PREDICATES      64 URIs      22 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9097698-B2 schema:about anzsrc-for:2921
2 schema:author Ncb0754476b514087a5245496bf87393c
3 schema:citation sg:pub.10.1007/s00216-008-1995-y
4 sg:pub.10.1038/35084037
5 sg:pub.10.1038/nature03959
6 sg:pub.10.1038/nature05498
7 sg:pub.10.1038/nature07719
8 sg:pub.10.1038/nbt.1495
9 sg:pub.10.1038/nmat941
10 sg:pub.10.1038/nnano.2010.42
11 https://doi.org/10.1002/adma.200601191
12 https://doi.org/10.1002/biot.201200153
13 https://doi.org/10.1016/s0006-3495(99)77153-5
14 https://doi.org/10.1021/ja064274j
15 https://doi.org/10.1021/jp108865q
16 https://doi.org/10.1021/la102671g
17 https://doi.org/10.1021/la901271c
18 https://doi.org/10.1021/nl0601076
19 https://doi.org/10.1021/nl0716451
20 https://doi.org/10.1021/nl071890k
21 https://doi.org/10.1021/nl0726205
22 https://doi.org/10.1021/nl1001185
23 https://doi.org/10.1021/nl103873a
24 https://doi.org/10.1021/nl200147x
25 https://doi.org/10.1021/nl9029237
26 https://doi.org/10.1039/b805433a
27 https://doi.org/10.1073/pnas.0230489100
28 https://doi.org/10.1073/pnas.74.12.5463
29 https://doi.org/10.1073/pnas.93.24.13770
30 https://doi.org/10.1073/pnas.97.3.1079
31 https://doi.org/10.1088/0957-4484/17/3/002
32 https://doi.org/10.1126/science.1084564
33 https://doi.org/10.1126/science.1102896
34 https://doi.org/10.1126/science.1117389
35 https://doi.org/10.1126/science.1150427
36 https://doi.org/10.1147/rd.431.0127
37 https://doi.org/10.1529/biophysj.104.041814
38 schema:description <p id="p-0001" num="0000">An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.</p>
39 schema:keywords confines
40 dielectric
41 embodiment
42 gap
43 leakage
44 mobility
45 nanodevices
46 nanowires
47 pin
48 recognition
49 retraction
50 sequencing
51 solution
52 structural stability
53 surface
54 schema:name Nanogap device with capped nanowire structures
55 schema:recipient https://www.grid.ac/institutes/grid.410484.d
56 https://www.grid.ac/institutes/grid.471366.1
57 schema:sameAs https://app.dimensions.ai/details/patent/US-9097698-B2
58 schema:sdDatePublished 2019-03-07T15:31
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N9e89ba071b2048c88fe10a4d6c415c62
61 sgo:license sg:explorer/license/
62 sgo:sdDataset patents
63 rdf:type sgo:Patent
64 N0ae60bee865d44bc94ff975bc16297d4 rdf:first Nb6cc8b99337a415cbe6e55faa81a70b5
65 rdf:rest N782506ee20404b508ef4b3ddae09c8c2
66 N782506ee20404b508ef4b3ddae09c8c2 rdf:first Nbda800fd54384431a04f07a31f914cca
67 rdf:rest rdf:nil
68 N7b225a724a034e34bb7ca10985488859 rdf:first N9becffcb4efd46dd952dbc1bc16e6042
69 rdf:rest N0ae60bee865d44bc94ff975bc16297d4
70 N8dfa14de9f4342ffa61d16938bc920ef schema:name Jingwei Bai
71 rdf:type schema:Person
72 N9becffcb4efd46dd952dbc1bc16e6042 schema:name Satyavolu S. Papa Rao
73 rdf:type schema:Person
74 N9e89ba071b2048c88fe10a4d6c415c62 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Na2f4389ab5e942a49bb073e07b3978da rdf:first N8dfa14de9f4342ffa61d16938bc920ef
77 rdf:rest N7b225a724a034e34bb7ca10985488859
78 Nb6cc8b99337a415cbe6e55faa81a70b5 schema:name Kathleen B. Reuter
79 rdf:type schema:Person
80 Nbda800fd54384431a04f07a31f914cca schema:name Joshua T. Smith
81 rdf:type schema:Person
82 Nc63e762d3a4f4df4977cb31e5b9c7953 schema:name Yann A. N. Astier
83 rdf:type schema:Person
84 Ncb0754476b514087a5245496bf87393c rdf:first Nc63e762d3a4f4df4977cb31e5b9c7953
85 rdf:rest Na2f4389ab5e942a49bb073e07b3978da
86 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
87 rdf:type schema:DefinedTerm
88 sg:pub.10.1007/s00216-008-1995-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022726570
89 https://doi.org/10.1007/s00216-008-1995-y
90 rdf:type schema:CreativeWork
91 sg:pub.10.1038/35084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
92 https://doi.org/10.1038/35084037
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
95 https://doi.org/10.1038/nature03959
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/nature05498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072844
98 https://doi.org/10.1038/nature05498
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
101 https://doi.org/10.1038/nature07719
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nbt.1495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037155475
104 https://doi.org/10.1038/nbt.1495
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nmat941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030841250
107 https://doi.org/10.1038/nmat941
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nnano.2010.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008050084
110 https://doi.org/10.1038/nnano.2010.42
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/adma.200601191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038208071
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/biot.201200153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010262377
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0006-3495(99)77153-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030222196
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/ja064274j schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661455
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/jp108865q schema:sameAs https://app.dimensions.ai/details/publication/pub.1030375216
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/la102671g schema:sameAs https://app.dimensions.ai/details/publication/pub.1045232229
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/la901271c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056164986
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/nl0601076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017504546
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/nl0716451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217387
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/nl071890k schema:sameAs https://app.dimensions.ai/details/publication/pub.1024637030
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/nl0726205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022633772
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/nl1001185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016095622
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/nl103873a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046238968
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nl200147x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037503754
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/nl9029237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043544194
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1039/b805433a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024495458
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.0230489100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004751048
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.74.12.5463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025360556
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1073/pnas.93.24.13770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336761
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1073/pnas.97.3.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041054957
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/0957-4484/17/3/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000374893
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.1084564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002941735
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1150427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030422156
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1147/rd.431.0127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182411
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1529/biophysj.104.041814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038897645
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.410484.d schema:Organization
167 https://www.grid.ac/institutes/grid.471366.1 schema:Organization
 




Preview window. Press ESC to close (or click here)


...