General method for designing self-assembling protein nanomaterials


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

David Baker , Neil King , William Sheffler , Todd Yeates

ABSTRACT

Methods and systems for computationally designing self-assembling polypeptides are disclosed. A representation of a docked configuration of a symmetric protein architecture can be determined by a computing device configured to computationally symmetrically dock representations of protein building blocks within a representation of a symmetric protein architecture, where symmetrically docking a representation of a particular protein building block can include determining a configuration of the protein building blocks in three-dimensional space within the symmetric protein architecture configured to generate interfaces between building blocks suitable for computational protein interface design. The amino acid sequence of the docked protein building blocks can be computationally modified to specify protein-protein interfaces between the plurality of protein building blocks that are energetically favorable to drive self-assembly of a protein that includes the modified amino acid sequence. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2581", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "David Baker", 
        "type": "Person"
      }, 
      {
        "name": "Neil King", 
        "type": "Person"
      }, 
      {
        "name": "William Sheffler", 
        "type": "Person"
      }, 
      {
        "name": "Todd Yeates", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0907444910007493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000235100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889892009944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003451988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cb700054k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005771799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006097577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0712247105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007557110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008225564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.041614998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009030582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/356083a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017646872", 
          "https://doi.org/10.1038/356083a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2011.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020252637", 
          "https://doi.org/10.1038/nnano.2011.122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444996012255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020405374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1123223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025939268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1996.0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025955952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1999.4174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028456646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1251/bpo70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028952493", 
          "https://doi.org/10.1251/bpo70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1251/bpo70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028952493", 
          "https://doi.org/10.1251/bpo70"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/5.8.827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030287582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1115124108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036921857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038382567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.1998.4073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039414192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909025153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040995606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja075261o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041316438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2007.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042204379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1047-8477(03)00069-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046234181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046627562", 
          "https://doi.org/10.1038/nature09304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560020916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046701730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444904016427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049496527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051906266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.19.10383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052702234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.073125207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052863796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar900273t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1088074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5393.1462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563274"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Methods and systems for computationally designing self-assembling polypeptides are disclosed. A representation of a docked configuration of a symmetric protein architecture can be determined by a computing device configured to computationally symmetrically dock representations of protein building blocks within a representation of a symmetric protein architecture, where symmetrically docking a representation of a particular protein building block can include determining a configuration of the protein building blocks in three-dimensional space within the symmetric protein architecture configured to generate interfaces between building blocks suitable for computational protein interface design. The amino acid sequence of the docked protein building blocks can be computationally modified to specify protein-protein interfaces between the plurality of protein building blocks that are energetically favorable to drive self-assembly of a protein that includes the modified amino acid sequence.

", "id": "sg:patent.US-8969521-B2", "keywords": [ "general method", "protein", "method", "polypeptide", "representation", "configuration", "protein architecture", "Equipment and Supply", "protein building", "docking", "particular protein", "three-dimensional space", "interface", "building", "protein interface", "amino acid sequence", "protein-protein interface", "plurality", "self-assembly", "modified amino acid" ], "name": "General method for designing self-assembling protein nanomaterials", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.30389.31", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.34477.33", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8969521-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_0db08f31.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8969521-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8969521-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8969521-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8969521-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      14 PREDICATES      66 URIs      27 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8969521-B2 schema:about anzsrc-for:2581
2 schema:author N17ea5134b5544672b9ee3354e45774d5
3 schema:citation sg:pub.10.1038/356083a0
4 sg:pub.10.1038/nature04586
5 sg:pub.10.1038/nature09304
6 sg:pub.10.1038/nnano.2011.122
7 sg:pub.10.1251/bpo70
8 https://doi.org/10.1002/jcc.20084
9 https://doi.org/10.1002/pro.458
10 https://doi.org/10.1002/pro.5560020916
11 https://doi.org/10.1002/pro.604
12 https://doi.org/10.1006/jmbi.1993.1648
13 https://doi.org/10.1006/jsbi.1996.0004
14 https://doi.org/10.1006/jsbi.1998.4073
15 https://doi.org/10.1006/jsbi.1999.4174
16 https://doi.org/10.1016/j.jmb.2007.05.022
17 https://doi.org/10.1016/s1047-8477(03)00069-8
18 https://doi.org/10.1021/ar900273t
19 https://doi.org/10.1021/cb700054k
20 https://doi.org/10.1021/ja075261o
21 https://doi.org/10.1073/pnas.041614998
22 https://doi.org/10.1073/pnas.0712247105
23 https://doi.org/10.1073/pnas.1115124108
24 https://doi.org/10.1073/pnas.97.19.10383
25 https://doi.org/10.1093/protein/5.8.827
26 https://doi.org/10.1107/s0021889892009944
27 https://doi.org/10.1107/s0907444904016427
28 https://doi.org/10.1107/s0907444909025153
29 https://doi.org/10.1107/s0907444910007493
30 https://doi.org/10.1107/s0907444996012255
31 https://doi.org/10.1110/ps.073125207
32 https://doi.org/10.1126/science.1088074
33 https://doi.org/10.1126/science.1123223
34 https://doi.org/10.1126/science.282.5393.1462
35 schema:description <p num="p-0001">Methods and systems for computationally designing self-assembling polypeptides are disclosed. A representation of a docked configuration of a symmetric protein architecture can be determined by a computing device configured to computationally symmetrically dock representations of protein building blocks within a representation of a symmetric protein architecture, where symmetrically docking a representation of a particular protein building block can include determining a configuration of the protein building blocks in three-dimensional space within the symmetric protein architecture configured to generate interfaces between building blocks suitable for computational protein interface design. The amino acid sequence of the docked protein building blocks can be computationally modified to specify protein-protein interfaces between the plurality of protein building blocks that are energetically favorable to drive self-assembly of a protein that includes the modified amino acid sequence.</p>
36 schema:keywords Equipment and Supply
37 amino acid sequence
38 building
39 configuration
40 docking
41 general method
42 interface
43 method
44 modified amino acid
45 particular protein
46 plurality
47 polypeptide
48 protein
49 protein architecture
50 protein building
51 protein interface
52 protein-protein interface
53 representation
54 self-assembly
55 three-dimensional space
56 schema:name General method for designing self-assembling protein nanomaterials
57 schema:recipient https://www.grid.ac/institutes/grid.30389.31
58 https://www.grid.ac/institutes/grid.34477.33
59 schema:sameAs https://app.dimensions.ai/details/patent/US-8969521-B2
60 schema:sdDatePublished 2019-03-07T15:31
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nf79ecc70ac0543fbbbce90c52d62f81b
63 sgo:license sg:explorer/license/
64 sgo:sdDataset patents
65 rdf:type sgo:Patent
66 N17ea5134b5544672b9ee3354e45774d5 rdf:first Nd538b9dbf824490985819463f94af4ed
67 rdf:rest Ne181cbfb84cc4663ac2a590aea73f2ad
68 N3e89dbeffaf149909e337d02c5c0bf39 schema:name William Sheffler
69 rdf:type schema:Person
70 N446a15460a9b4b7d869c07568b9a458f rdf:first N3e89dbeffaf149909e337d02c5c0bf39
71 rdf:rest Nb161c8663d364931ba75d099dc5e4d48
72 Nb161c8663d364931ba75d099dc5e4d48 rdf:first Nee30ff6dd489463daf9d11e8ccf23b2f
73 rdf:rest rdf:nil
74 Nd538b9dbf824490985819463f94af4ed schema:name David Baker
75 rdf:type schema:Person
76 Ndee5c1b56d4f4a5ca1646a1840d06561 schema:name Neil King
77 rdf:type schema:Person
78 Ne181cbfb84cc4663ac2a590aea73f2ad rdf:first Ndee5c1b56d4f4a5ca1646a1840d06561
79 rdf:rest N446a15460a9b4b7d869c07568b9a458f
80 Nee30ff6dd489463daf9d11e8ccf23b2f schema:name Todd Yeates
81 rdf:type schema:Person
82 Nf79ecc70ac0543fbbbce90c52d62f81b schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 anzsrc-for:2581 schema:inDefinedTermSet anzsrc-for:
85 rdf:type schema:DefinedTerm
86 sg:pub.10.1038/356083a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017646872
87 https://doi.org/10.1038/356083a0
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/nature04586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
90 https://doi.org/10.1038/nature04586
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/nature09304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046627562
93 https://doi.org/10.1038/nature09304
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nnano.2011.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020252637
96 https://doi.org/10.1038/nnano.2011.122
97 rdf:type schema:CreativeWork
98 sg:pub.10.1251/bpo70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028952493
99 https://doi.org/10.1251/bpo70
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/jcc.20084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008225564
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/pro.458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051906266
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/pro.5560020916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046701730
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/pro.604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038382567
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1006/jmbi.1993.1648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006097577
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1006/jsbi.1996.0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025955952
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/jsbi.1998.4073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039414192
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1006/jsbi.1999.4174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028456646
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jmb.2007.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042204379
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s1047-8477(03)00069-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046234181
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/ar900273t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055151990
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/cb700054k schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771799
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/ja075261o schema:sameAs https://app.dimensions.ai/details/publication/pub.1041316438
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1073/pnas.041614998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009030582
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.0712247105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007557110
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1073/pnas.1115124108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036921857
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1073/pnas.97.19.10383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052702234
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/protein/5.8.827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030287582
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1107/s0021889892009944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003451988
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1107/s0907444904016427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049496527
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1107/s0907444909025153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040995606
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1107/s0907444910007493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000235100
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1107/s0907444996012255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020405374
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1110/ps.073125207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052863796
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.1088074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448428
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.1123223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025939268
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.282.5393.1462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563274
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.30389.31 schema:Organization
156 https://www.grid.ac/institutes/grid.34477.33 schema:Organization
 




Preview window. Press ESC to close (or click here)


...