Modeling technique for resistive random access memory (RRAM) cells


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Wei Lu

ABSTRACT

Accurate simulation of two-terminal resistive random access memory (RRAM) behavior is accomplished by solving equations including state variables for filament length growth, filament width growth, and temperature. Such simulations are often run in a SPICE environment. Highly accurate models simulate the dynamic nature of filament propagation and multiple resistive states by using a sub-circuit to represent an RRAM cell. In the sub-circuit, voltages on floating nodes control current output while the voltage dropped across the sub-circuit controls growth and temperature characteristics. Properly executed, such a sub-circuit can accurately model filament growth at all phases of conductance including dynamic switching and a plurality of resistive states. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2358", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Wei Lu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/14/4/311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000008791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(03)00117-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000751229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90394-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001871718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl803669s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004292239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207219208925733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011066753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207219208925733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011066753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1101(99)00182-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012626917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016486670", 
          "https://doi.org/10.1038/nmat2023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8037689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017668025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(81)90038-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019815338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073225h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021056823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021708578", 
          "https://doi.org/10.1038/21602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90346-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026464105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(85)90912-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026664535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl904092h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036030317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036680225", 
          "https://doi.org/10.1038/nmat2028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(83)90398-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038730641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5426.391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039329548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/12/2/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041714625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041881218", 
          "https://doi.org/10.1038/nature03190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418639108224451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046191748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073224p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-i-1.1982.0009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056855000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.99491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058139581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/16.861587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061097083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2008.2010584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061593033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2003.808508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.570478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062180525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1095520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5258.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.24.1363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063040187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2004.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067968603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2004.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067968607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Accurate simulation of two-terminal resistive random access memory (RRAM) behavior is accomplished by solving equations including state variables for filament length growth, filament width growth, and temperature. Such simulations are often run in a SPICE environment. Highly accurate models simulate the dynamic nature of filament propagation and multiple resistive states by using a sub-circuit to represent an RRAM cell. In the sub-circuit, voltages on floating nodes control current output while the voltage dropped across the sub-circuit controls growth and temperature characteristics. Properly executed, such a sub-circuit can accurately model filament growth at all phases of conductance including dynamic switching and a plurality of resistive states.

", "id": "sg:patent.US-8930174-B2", "keywords": [ "modeling technique", "random access memory", "cell", "accurate simulation", "behavior", "solving equation", "state variable", "filament", "temperature", "simulation", "environment", "accurate model", "dynamic nature", "propagation", "state", "circuit", "voltage", "control", "control growth", "characteristic", "conductance", "switching", "plurality" ], "name": "Modeling technique for resistive random access memory (RRAM) cells", "sameAs": [ "https://app.dimensions.ai/details/patent/US-8930174-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:37", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_e5ffef63.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8930174-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8930174-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8930174-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8930174-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      13 PREDICATES      67 URIs      30 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8930174-B2 schema:about anzsrc-for:2358
2 schema:author Nb4b17a1e1de44602b92e9fd35bf5f0ad
3 schema:citation sg:pub.10.1038/21602
4 sg:pub.10.1038/nature03190
5 sg:pub.10.1038/nmat2023
6 sg:pub.10.1038/nmat2028
7 https://doi.org/10.1016/0022-3093(83)90398-8
8 https://doi.org/10.1016/0022-3093(85)90912-3
9 https://doi.org/10.1016/0022-3093(89)90346-3
10 https://doi.org/10.1016/0022-3093(89)90394-3
11 https://doi.org/10.1016/0038-1101(81)90038-1
12 https://doi.org/10.1016/s0038-1101(99)00182-3
13 https://doi.org/10.1016/s0040-6090(03)00117-2
14 https://doi.org/10.1021/nl073224p
15 https://doi.org/10.1021/nl073225h
16 https://doi.org/10.1021/nl803669s
17 https://doi.org/10.1021/nl8037689
18 https://doi.org/10.1021/nl904092h
19 https://doi.org/10.1049/ip-i-1.1982.0009
20 https://doi.org/10.1063/1.99491
21 https://doi.org/10.1080/00207219208925733
22 https://doi.org/10.1080/01418639108224451
23 https://doi.org/10.1088/0957-4484/12/2/303
24 https://doi.org/10.1088/0957-4484/14/4/311
25 https://doi.org/10.1109/16.861587
26 https://doi.org/10.1109/ted.2008.2010584
27 https://doi.org/10.1109/tnano.2003.808508
28 https://doi.org/10.1116/1.570478
29 https://doi.org/10.1126/science.1095520
30 https://doi.org/10.1126/science.272.5258.85
31 https://doi.org/10.1126/science.285.5426.391
32 https://doi.org/10.1143/jjap.24.1363
33 https://doi.org/10.1557/mrs2004.232
34 https://doi.org/10.1557/mrs2004.236
35 schema:description <p num="p-0001">Accurate simulation of two-terminal resistive random access memory (RRAM) behavior is accomplished by solving equations including state variables for filament length growth, filament width growth, and temperature. Such simulations are often run in a SPICE environment. Highly accurate models simulate the dynamic nature of filament propagation and multiple resistive states by using a sub-circuit to represent an RRAM cell. In the sub-circuit, voltages on floating nodes control current output while the voltage dropped across the sub-circuit controls growth and temperature characteristics. Properly executed, such a sub-circuit can accurately model filament growth at all phases of conductance including dynamic switching and a plurality of resistive states.</p>
36 schema:keywords accurate model
37 accurate simulation
38 behavior
39 cell
40 characteristic
41 circuit
42 conductance
43 control
44 control growth
45 dynamic nature
46 environment
47 filament
48 modeling technique
49 plurality
50 propagation
51 random access memory
52 simulation
53 solving equation
54 state
55 state variable
56 switching
57 temperature
58 voltage
59 schema:name Modeling technique for resistive random access memory (RRAM) cells
60 schema:sameAs https://app.dimensions.ai/details/patent/US-8930174-B2
61 schema:sdDatePublished 2019-03-07T15:37
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N0c6dfdfa501746e2ae8f6948713e6661
64 sgo:license sg:explorer/license/
65 sgo:sdDataset patents
66 rdf:type sgo:Patent
67 N0c6dfdfa501746e2ae8f6948713e6661 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N62d39b36ec43409e94933bdd839abbb8 schema:name Wei Lu
70 rdf:type schema:Person
71 Nb4b17a1e1de44602b92e9fd35bf5f0ad rdf:first N62d39b36ec43409e94933bdd839abbb8
72 rdf:rest rdf:nil
73 anzsrc-for:2358 schema:inDefinedTermSet anzsrc-for:
74 rdf:type schema:DefinedTerm
75 sg:pub.10.1038/21602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021708578
76 https://doi.org/10.1038/21602
77 rdf:type schema:CreativeWork
78 sg:pub.10.1038/nature03190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041881218
79 https://doi.org/10.1038/nature03190
80 rdf:type schema:CreativeWork
81 sg:pub.10.1038/nmat2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016486670
82 https://doi.org/10.1038/nmat2023
83 rdf:type schema:CreativeWork
84 sg:pub.10.1038/nmat2028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036680225
85 https://doi.org/10.1038/nmat2028
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0022-3093(83)90398-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038730641
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0022-3093(85)90912-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026664535
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0022-3093(89)90346-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026464105
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0022-3093(89)90394-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001871718
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0038-1101(81)90038-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019815338
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0038-1101(99)00182-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012626917
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0040-6090(03)00117-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000751229
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/nl073224p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217645
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/nl073225h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021056823
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/nl803669s schema:sameAs https://app.dimensions.ai/details/publication/pub.1004292239
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/nl8037689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017668025
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/nl904092h schema:sameAs https://app.dimensions.ai/details/publication/pub.1036030317
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1049/ip-i-1.1982.0009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056855000
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.99491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058139581
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1080/00207219208925733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011066753
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/01418639108224451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046191748
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0957-4484/12/2/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041714625
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0957-4484/14/4/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000008791
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/16.861587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061097083
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/ted.2008.2010584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061593033
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tnano.2003.808508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711765
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1116/1.570478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062180525
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.1095520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449454
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1126/science.272.5258.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552676
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1126/science.285.5426.391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039329548
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1143/jjap.24.1363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063040187
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1557/mrs2004.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968603
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1557/mrs2004.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968607
142 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...