Digital counting of individual molecules by stochastic attachment of diverse labels


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Stephen P. A. Fodor , Glenn K. Fu

ABSTRACT

Compositions, methods and kits are disclosed for high-sensitivity single molecule digital counting by the stochastic labeling of a collection of identical molecules by attachment of a diverse set of labels. Each copy of a molecule randomly chooses from a non-depleting reservoir of diverse labels. Detection may be by a variety of methods including hybridization based or sequencing. Molecules that would otherwise be identical in information content can be labeled to create a separately detectable product that is unique or approximately unique in a collection. This stochastic transformation relaxes the problem of counting molecules from one of locating and identifying identical molecules to a series of binary digital questions detecting whether preprogrammed labels are present. The methods may be used, for example, to estimate the number of separate molecules of a given type or types within a sample. More... »

Related SciGraph Publications

  • 2001-01. Counting alleles reveals a connection between chromosome 18q loss and vascular invasion in NATURE BIOTECHNOLOGY
  • 2010-05. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing in NATURE GENETICS
  • 1997-12. Genome-wide expression monitoring in Saccharomyces cerevisiae in NATURE BIOTECHNOLOGY
  • 2012-01. Counting absolute numbers of molecules using unique molecular identifiers in NATURE METHODS
  • 2008-06. Rapid genome sequencing with short universal tiling probes in NATURE BIOTECHNOLOGY
  • 2006-06. Interrogation of genomes by molecular copy-number counting (MCC) in NATURE METHODS
  • 2010-12. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing in BMC GENOMICS
  • 1996-12. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy in NATURE GENETICS
  • 1996-12. Expression monitoring by hybridization to high-density oligonucleotide arrays in NATURE BIOTECHNOLOGY
  • 2008-03. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex in NATURE METHODS
  • 2008-07. Mapping and quantifying mammalian transcriptomes by RNA-Seq in NATURE METHODS
  • 2012-07. Non-invasive prenatal measurement of the fetal genome in NATURE
  • 2000-06. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays in NATURE BIOTECHNOLOGY
  • 1999-06. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays in NATURE GENETICS
  • 2009-01. RNA-Seq: a revolutionary tool for transcriptomics in NATURE REVIEWS GENETICS
  • 1998-01. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays in NATURE BIOTECHNOLOGY
  • 2010-01. A small-cell lung cancer genome with complex signatures of tobacco exposure in NATURE
  • 2010-12. Haplotyping and copy number estimation of the highly polymorphic human beta-defensin locus on 8p23 by 454 amplicon sequencing in BMC GENOMICS
  • 2009-10. Personalized copy number and segmental duplication maps using next-generation sequencing in NATURE GENETICS
  • 2010-02. Parallel, tag-directed assembly of locally derived short sequence reads in NATURE METHODS
  • 2000-09. Simultaneous stochastic sensing of divalent metal ions in NATURE BIOTECHNOLOGY
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2358", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Stephen P. A. Fodor", 
            "type": "Person"
          }, 
          {
            "name": "Glenn K. Fu", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1471-2164-11-244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000146260", 
              "https://doi.org/10.1186/1471-2164-11-244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1110064108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000300035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/83572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001065071", 
              "https://doi.org/10.1038/83572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001541002", 
              "https://doi.org/10.1038/nbt1405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1296-450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002428346", 
              "https://doi.org/10.1038/ng1296-450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002804833", 
              "https://doi.org/10.1038/nmeth880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1525-1578(10)60702-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004065561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004321366", 
              "https://doi.org/10.1186/1471-2164-11-252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1296-1675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005458398", 
              "https://doi.org/10.1038/nbt1296-1675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006886726", 
              "https://doi.org/10.1038/ng.555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008270984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011874288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.103218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013568481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.106344.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015025184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017388763", 
              "https://doi.org/10.1038/nmeth.1778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017495087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1017621108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.96.16.9236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020473434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/9674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020778264", 
              "https://doi.org/10.1038/9674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020822593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jgg.2011.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022996951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)81845-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024010988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr949", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024337156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ab.2006.01.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024518748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024786911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025089276", 
              "https://doi.org/10.1038/nmeth.1416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1105422108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025253093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1999.3063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025713217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025720410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-04-4603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026060804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1208715109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027689259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/79275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027719967", 
              "https://doi.org/10.1038/79275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.4.1665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028246956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028559169", 
              "https://doi.org/10.1038/76469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.092981.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029322821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030687647", 
              "https://doi.org/10.1038/nrg2484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp583", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031477965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.147686.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033444277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0198-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035355418", 
              "https://doi.org/10.1038/nbt0198-45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.2003.3211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035541412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035989827", 
              "https://doi.org/10.1038/ng.437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.10.6.853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036115098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.89.1.392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036355970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1098918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037256982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1118018109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038426374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038456574", 
              "https://doi.org/10.1038/nature11251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041012667", 
              "https://doi.org/10.1038/nature08629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.1349003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042063598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042740345", 
              "https://doi.org/10.1038/nmeth.1184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1007983107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043239977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044779545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1140818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044889719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045381177", 
              "https://doi.org/10.1038/nmeth.1226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046277231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.103499.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047946706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.123158.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050710497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1297-1359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052281386", 
              "https://doi.org/10.1038/nbt1297-1359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/gtmb.2010.0029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059267645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.274.5287.610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062554585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.3353714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062609115"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    Compositions, methods and kits are disclosed for high-sensitivity single molecule digital counting by the stochastic labeling of a collection of identical molecules by attachment of a diverse set of labels. Each copy of a molecule randomly chooses from a non-depleting reservoir of diverse labels. Detection may be by a variety of methods including hybridization based or sequencing. Molecules that would otherwise be identical in information content can be labeled to create a separately detectable product that is unique or approximately unique in a collection. This stochastic transformation relaxes the problem of counting molecules from one of locating and identifying identical molecules to a series of binary digital questions detecting whether preprogrammed labels are present. The methods may be used, for example, to estimate the number of separate molecules of a given type or types within a sample.

    ", "id": "sg:patent.US-8835358-B2", "keywords": [ "counting", "individual molecule", "attachment", "label", "composition", "method", "kit", "high sensitivity", "labeling", "collection", "molecule", "diverse set", "copy", "chooses", "reservoir", "hybridization", "sequencing", "information content", "product", "transformation", "locating", "binary", "separate molecule", "given type", "sample" ], "name": "Digital counting of individual molecules by stochastic attachment of diverse labels", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.433294.b", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.418255.f", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8835358-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:37", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_ec415531.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8835358-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8835358-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8835358-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8835358-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    256 TRIPLES      14 PREDICATES      100 URIs      32 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-8835358-B2 schema:about anzsrc-for:2358
    2 schema:author N4e5da04a07f744f79c2587804601daaa
    3 schema:citation sg:pub.10.1038/76469
    4 sg:pub.10.1038/79275
    5 sg:pub.10.1038/83572
    6 sg:pub.10.1038/9674
    7 sg:pub.10.1038/nature08629
    8 sg:pub.10.1038/nature11251
    9 sg:pub.10.1038/nbt0198-45
    10 sg:pub.10.1038/nbt1296-1675
    11 sg:pub.10.1038/nbt1297-1359
    12 sg:pub.10.1038/nbt1405
    13 sg:pub.10.1038/ng.437
    14 sg:pub.10.1038/ng.555
    15 sg:pub.10.1038/ng1296-450
    16 sg:pub.10.1038/nmeth.1184
    17 sg:pub.10.1038/nmeth.1226
    18 sg:pub.10.1038/nmeth.1416
    19 sg:pub.10.1038/nmeth.1778
    20 sg:pub.10.1038/nmeth880
    21 sg:pub.10.1038/nrg2484
    22 sg:pub.10.1186/1471-2164-11-244
    23 sg:pub.10.1186/1471-2164-11-252
    24 https://doi.org/10.1002/humu.28
    25 https://doi.org/10.1006/jmbi.1999.3063
    26 https://doi.org/10.1006/jtbi.2003.3211
    27 https://doi.org/10.1016/j.ab.2006.01.031
    28 https://doi.org/10.1016/j.jgg.2011.02.003
    29 https://doi.org/10.1016/s0092-8674(00)81845-0
    30 https://doi.org/10.1016/s1525-1578(10)60702-7
    31 https://doi.org/10.1073/pnas.1007983107
    32 https://doi.org/10.1073/pnas.1017621108
    33 https://doi.org/10.1073/pnas.1105422108
    34 https://doi.org/10.1073/pnas.1110064108
    35 https://doi.org/10.1073/pnas.1118018109
    36 https://doi.org/10.1073/pnas.1208715109
    37 https://doi.org/10.1073/pnas.89.1.392
    38 https://doi.org/10.1073/pnas.96.16.9236
    39 https://doi.org/10.1073/pnas.97.4.1665
    40 https://doi.org/10.1089/gtmb.2010.0029
    41 https://doi.org/10.1093/bioinformatics/btp373
    42 https://doi.org/10.1093/bioinformatics/btp583
    43 https://doi.org/10.1093/bioinformatics/btp693
    44 https://doi.org/10.1093/nar/gkq368
    45 https://doi.org/10.1093/nar/gkq510
    46 https://doi.org/10.1093/nar/gkr217
    47 https://doi.org/10.1093/nar/gkr949
    48 https://doi.org/10.1093/nar/gks1443
    49 https://doi.org/10.1093/nar/gkt091
    50 https://doi.org/10.1101/gr.092981.109
    51 https://doi.org/10.1101/gr.10.6.853
    52 https://doi.org/10.1101/gr.103499.109
    53 https://doi.org/10.1101/gr.106344.110
    54 https://doi.org/10.1101/gr.123158.111
    55 https://doi.org/10.1101/gr.1349003
    56 https://doi.org/10.1101/gr.147686.112
    57 https://doi.org/10.1126/science.1098918
    58 https://doi.org/10.1126/science.1140818
    59 https://doi.org/10.1126/science.270.5235.484
    60 https://doi.org/10.1126/science.274.5287.610
    61 https://doi.org/10.1126/science.3353714
    62 https://doi.org/10.1158/0008-5472.can-04-4603
    63 https://doi.org/10.1534/genetics.109.103218
    64 schema:description <p num="p-0001">Compositions, methods and kits are disclosed for high-sensitivity single molecule digital counting by the stochastic labeling of a collection of identical molecules by attachment of a diverse set of labels. Each copy of a molecule randomly chooses from a non-depleting reservoir of diverse labels. Detection may be by a variety of methods including hybridization based or sequencing. Molecules that would otherwise be identical in information content can be labeled to create a separately detectable product that is unique or approximately unique in a collection. This stochastic transformation relaxes the problem of counting molecules from one of locating and identifying identical molecules to a series of binary digital questions detecting whether preprogrammed labels are present. The methods may be used, for example, to estimate the number of separate molecules of a given type or types within a sample.</p>
    65 schema:keywords attachment
    66 binary
    67 chooses
    68 collection
    69 composition
    70 copy
    71 counting
    72 diverse set
    73 given type
    74 high sensitivity
    75 hybridization
    76 individual molecule
    77 information content
    78 kit
    79 label
    80 labeling
    81 locating
    82 method
    83 molecule
    84 product
    85 reservoir
    86 sample
    87 separate molecule
    88 sequencing
    89 transformation
    90 schema:name Digital counting of individual molecules by stochastic attachment of diverse labels
    91 schema:recipient https://www.grid.ac/institutes/grid.418255.f
    92 https://www.grid.ac/institutes/grid.433294.b
    93 schema:sameAs https://app.dimensions.ai/details/patent/US-8835358-B2
    94 schema:sdDatePublished 2019-03-07T15:37
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher N3f42b84a36384eb28d439285f06f91d0
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset patents
    99 rdf:type sgo:Patent
    100 N2409589d512049d8bfcd8e131e2c6b71 schema:name Glenn K. Fu
    101 rdf:type schema:Person
    102 N36b53487e5e3423389365e7afeb9b9bb schema:name Stephen P. A. Fodor
    103 rdf:type schema:Person
    104 N3f42b84a36384eb28d439285f06f91d0 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N4e5da04a07f744f79c2587804601daaa rdf:first N36b53487e5e3423389365e7afeb9b9bb
    107 rdf:rest Nd8784a81c5f544c78eb131bbe0b921cb
    108 Nd8784a81c5f544c78eb131bbe0b921cb rdf:first N2409589d512049d8bfcd8e131e2c6b71
    109 rdf:rest rdf:nil
    110 anzsrc-for:2358 schema:inDefinedTermSet anzsrc-for:
    111 rdf:type schema:DefinedTerm
    112 sg:pub.10.1038/76469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559169
    113 https://doi.org/10.1038/76469
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/79275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027719967
    116 https://doi.org/10.1038/79275
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1038/83572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001065071
    119 https://doi.org/10.1038/83572
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/9674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020778264
    122 https://doi.org/10.1038/9674
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1038/nature08629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041012667
    125 https://doi.org/10.1038/nature08629
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1038/nature11251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038456574
    128 https://doi.org/10.1038/nature11251
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1038/nbt0198-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035355418
    131 https://doi.org/10.1038/nbt0198-45
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
    134 https://doi.org/10.1038/nbt1296-1675
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nbt1297-1359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052281386
    137 https://doi.org/10.1038/nbt1297-1359
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nbt1405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001541002
    140 https://doi.org/10.1038/nbt1405
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/ng.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989827
    143 https://doi.org/10.1038/ng.437
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/ng.555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006886726
    146 https://doi.org/10.1038/ng.555
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/ng1296-450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002428346
    149 https://doi.org/10.1038/ng1296-450
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
    152 https://doi.org/10.1038/nmeth.1184
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    155 https://doi.org/10.1038/nmeth.1226
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nmeth.1416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025089276
    158 https://doi.org/10.1038/nmeth.1416
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nmeth.1778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017388763
    161 https://doi.org/10.1038/nmeth.1778
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/nmeth880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002804833
    164 https://doi.org/10.1038/nmeth880
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
    167 https://doi.org/10.1038/nrg2484
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/1471-2164-11-244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000146260
    170 https://doi.org/10.1186/1471-2164-11-244
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1186/1471-2164-11-252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004321366
    173 https://doi.org/10.1186/1471-2164-11-252
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1002/humu.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024786911
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1006/jmbi.1999.3063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025713217
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1006/jtbi.2003.3211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035541412
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.ab.2006.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024518748
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.jgg.2011.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022996951
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/s0092-8674(00)81845-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024010988
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/s1525-1578(10)60702-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004065561
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1073/pnas.1007983107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043239977
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1073/pnas.1017621108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061614
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1073/pnas.1105422108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025253093
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1073/pnas.1110064108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000300035
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1073/pnas.1118018109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038426374
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1073/pnas.1208715109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027689259
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1073/pnas.89.1.392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036355970
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1073/pnas.96.16.9236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020473434
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1073/pnas.97.4.1665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028246956
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1089/gtmb.2010.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059267645
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/bioinformatics/btp373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008270984
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/bioinformatics/btp583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031477965
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1093/bioinformatics/btp693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046277231
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1093/nar/gkq368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025720410
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/nar/gkq510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020822593
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/nar/gkr217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011874288
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/nar/gkr949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024337156
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1093/nar/gks1443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017495087
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1093/nar/gkt091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044779545
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1101/gr.092981.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029322821
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1101/gr.10.6.853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036115098
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1101/gr.103499.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047946706
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1101/gr.106344.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015025184
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1101/gr.123158.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050710497
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1101/gr.1349003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042063598
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1101/gr.147686.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033444277
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1126/science.1098918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037256982
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/science.1140818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044889719
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1126/science.274.5287.610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554585
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1126/science.3353714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062609115
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1158/0008-5472.can-04-4603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026060804
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1534/genetics.109.103218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013568481
    254 rdf:type schema:CreativeWork
    255 https://www.grid.ac/institutes/grid.418255.f schema:Organization
    256 https://www.grid.ac/institutes/grid.433294.b schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...