Scalable quantum computer architecture with coupled donor-quantum dot qubits


Ontology type: sgo:Patent     


Patent Info

DATE

2014-08-26T00:00

AUTHORS

Thomas Schenkel , Cheuk Chi LO , Christoph Weis , Stephen Lyon , Alexei TYRYSHKIN , Jeffrey Bokor

ABSTRACT

A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2389", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Thomas Schenkel", 
        "type": "Person"
      }, 
      {
        "name": "Cheuk Chi LO", 
        "type": "Person"
      }, 
      {
        "name": "Christoph Weis", 
        "type": "Person"
      }, 
      {
        "name": "Stephen Lyon", 
        "type": "Person"
      }, 
      {
        "name": "Alexei TYRYSHKIN", 
        "type": "Person"
      }, 
      {
        "name": "Jeffrey Bokor", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.90.087901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001302295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.087901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001302295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.081304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002563543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.081304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002563543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.081304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002563543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-062910-140514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003113912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.79.1217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.012306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003841535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.012306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003841535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009902692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009902692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.042302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039533588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.042302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039533588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041826012", 
          "https://doi.org/10.1038/nature07295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.035302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044699126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.035302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044699126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046101391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046101391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.045350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053069640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.045350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053069640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.045350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053069640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.045350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053069640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2003.820922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334812"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08-26T00:00", 
    "description": "

A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

", "id": "sg:patent.US-8816325-B2", "keywords": [ "quantum computer", "quantum dot", "quantum bit", "Architecture as Topic", "plurality", "single spin", "semiconductor layer", "donor atom", "wherein", "voltage", "pair", "method", "quantum", "apparatus", "pattern", "control", "Heisenberg", "transport", "spin-polarized electron" ], "name": "Scalable quantum computer architecture with coupled donor-quantum dot qubits", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.30389.31", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8816325-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:13", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00826.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8816325-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8816325-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8816325-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8816325-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      15 PREDICATES      45 URIs      27 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8816325-B2 schema:about anzsrc-for:2389
2 schema:author N680367f563d64aab8631a571d71e54f4
3 schema:citation sg:pub.10.1038/nature07295
4 https://doi.org/10.1103/physreva.62.012306
5 https://doi.org/10.1103/physreva.69.042302
6 https://doi.org/10.1103/physreva.70.052304
7 https://doi.org/10.1103/physreva.79.062301
8 https://doi.org/10.1103/physrevb.72.045350
9 https://doi.org/10.1103/physrevb.72.081304
10 https://doi.org/10.1103/physrevb.80.035302
11 https://doi.org/10.1103/physrevlett.90.087901
12 https://doi.org/10.1103/revmodphys.79.1217
13 https://doi.org/10.1109/jstqe.2003.820922
14 https://doi.org/10.1146/annurev-conmatphys-062910-140514
15 schema:datePublished 2014-08-26T00:00
16 schema:description <p num="p-0001">A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.</p>
17 schema:keywords Architecture as Topic
18 Heisenberg
19 apparatus
20 control
21 donor atom
22 method
23 pair
24 pattern
25 plurality
26 quantum
27 quantum bit
28 quantum computer
29 quantum dot
30 semiconductor layer
31 single spin
32 spin-polarized electron
33 transport
34 voltage
35 wherein
36 schema:name Scalable quantum computer architecture with coupled donor-quantum dot qubits
37 schema:recipient https://www.grid.ac/institutes/grid.30389.31
38 schema:sameAs https://app.dimensions.ai/details/patent/US-8816325-B2
39 schema:sdDatePublished 2019-04-18T10:13
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Na637ca540a9b4eed84844e7a11b58913
42 sgo:license sg:explorer/license/
43 sgo:sdDataset patents
44 rdf:type sgo:Patent
45 N0b2f5051dabd4863bd0f8193fe325c2b schema:name Christoph Weis
46 rdf:type schema:Person
47 N12cb1527c459404c98215ad4ae25416e schema:name Stephen Lyon
48 rdf:type schema:Person
49 N316cb812f34a43dabf4384e2ad40bad4 rdf:first N442a513388ae49a0b56c4dcf9d0d13a0
50 rdf:rest Nd5db7cfd73674d8d947735449f545a35
51 N442a513388ae49a0b56c4dcf9d0d13a0 schema:name Alexei TYRYSHKIN
52 rdf:type schema:Person
53 N4ed5cf0224894e5585cc0de3b5ea2daf schema:name Jeffrey Bokor
54 rdf:type schema:Person
55 N680367f563d64aab8631a571d71e54f4 rdf:first Nb2fd4a5bffb240c9bc03e33e9ded60d6
56 rdf:rest Ndc59d692df8c43f5ba831af21377cb96
57 N8b4b8a4521134fa8a66d7a0021dd03cb rdf:first N12cb1527c459404c98215ad4ae25416e
58 rdf:rest N316cb812f34a43dabf4384e2ad40bad4
59 Na637ca540a9b4eed84844e7a11b58913 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nb2fd4a5bffb240c9bc03e33e9ded60d6 schema:name Thomas Schenkel
62 rdf:type schema:Person
63 Nd5db7cfd73674d8d947735449f545a35 rdf:first N4ed5cf0224894e5585cc0de3b5ea2daf
64 rdf:rest rdf:nil
65 Ndc59d692df8c43f5ba831af21377cb96 rdf:first Nf5d470dd0cda4a8589b311403788cca1
66 rdf:rest Nde477178705e43aa9b8713b21a1e4232
67 Nde477178705e43aa9b8713b21a1e4232 rdf:first N0b2f5051dabd4863bd0f8193fe325c2b
68 rdf:rest N8b4b8a4521134fa8a66d7a0021dd03cb
69 Nf5d470dd0cda4a8589b311403788cca1 schema:name Cheuk Chi LO
70 rdf:type schema:Person
71 anzsrc-for:2389 schema:inDefinedTermSet anzsrc-for:
72 rdf:type schema:DefinedTerm
73 sg:pub.10.1038/nature07295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041826012
74 https://doi.org/10.1038/nature07295
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physreva.62.012306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003841535
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physreva.69.042302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039533588
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physreva.70.052304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046101391
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreva.79.062301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009902692
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrevb.72.045350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069640
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevb.72.081304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002563543
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevb.80.035302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044699126
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.90.087901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001302295
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/revmodphys.79.1217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003826730
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/jstqe.2003.820922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334812
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1146/annurev-conmatphys-062910-140514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003113912
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.30389.31 schema:Organization
 




Preview window. Press ESC to close (or click here)


...