Hierarchical based sequencing machine learning model


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Tony Ramon Martinez , Xinchuan Zeng , Richard Glenn Morris

ABSTRACT

A hierarchical based sequencing (HBS) machine learning model. In one example embodiment, a method of employing an HBS machine learning model to predict multiple interdependent output components of an MOD output decision may include determining an order for multiple interdependent output components of an MOD output decision. The method may also include sequentially training a classifier for each component in the selected order to predict the component based on an input and based on any previous predicted component(s). More... »

Related SciGraph Publications

  • 2003-12. Generalized rules for combination and joint training of classifiers in PATTERN ANALYSIS AND APPLICATIONS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Tony Ramon Martinez", 
            "type": "Person"
          }, 
          {
            "name": "Xinchuan Zeng", 
            "type": "Person"
          }, 
          {
            "name": "Richard Glenn Morris", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10044-002-0188-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004610567", 
              "https://doi.org/10.1007/s10044-002-0188-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2009.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027819381"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    A hierarchical based sequencing (HBS) machine learning model. In one example embodiment, a method of employing an HBS machine learning model to predict multiple interdependent output components of an MOD output decision may include determining an order for multiple interdependent output components of an MOD output decision. The method may also include sequentially training a classifier for each component in the selected order to predict the component based on an input and based on any previous predicted component(s).

    ", "id": "sg:patent.US-8812417-B2", "keywords": [ "sequencing", "machine", "embodiment", "method", "component", "output", "classifier", "input" ], "name": "Hierarchical based sequencing machine learning model", "sameAs": [ "https://app.dimensions.ai/details/patent/US-8812417-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_0db08f31.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8812417-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8812417-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8812417-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8812417-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    42 TRIPLES      13 PREDICATES      22 URIs      15 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-8812417-B2 schema:about anzsrc-for:2746
    2 schema:author N460844e318964699bb747da3039b42e3
    3 schema:citation sg:pub.10.1007/s10044-002-0188-0
    4 https://doi.org/10.1016/j.knosys.2009.12.002
    5 schema:description <p num="p-0001">A hierarchical based sequencing (HBS) machine learning model. In one example embodiment, a method of employing an HBS machine learning model to predict multiple interdependent output components of an MOD output decision may include determining an order for multiple interdependent output components of an MOD output decision. The method may also include sequentially training a classifier for each component in the selected order to predict the component based on an input and based on any previous predicted component(s).</p>
    6 schema:keywords classifier
    7 component
    8 embodiment
    9 input
    10 machine
    11 method
    12 output
    13 sequencing
    14 schema:name Hierarchical based sequencing machine learning model
    15 schema:sameAs https://app.dimensions.ai/details/patent/US-8812417-B2
    16 schema:sdDatePublished 2019-03-07T15:31
    17 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    18 schema:sdPublisher N09e23d061ae0490dadf9522f70259b1a
    19 sgo:license sg:explorer/license/
    20 sgo:sdDataset patents
    21 rdf:type sgo:Patent
    22 N09e23d061ae0490dadf9522f70259b1a schema:name Springer Nature - SN SciGraph project
    23 rdf:type schema:Organization
    24 N1bbdc655005e4267a505c734bc59ad97 schema:name Richard Glenn Morris
    25 rdf:type schema:Person
    26 N460844e318964699bb747da3039b42e3 rdf:first N54f04a5fba274334b730b79cc559d912
    27 rdf:rest Nb6814b25dd124020b04f372205b52125
    28 N54f04a5fba274334b730b79cc559d912 schema:name Tony Ramon Martinez
    29 rdf:type schema:Person
    30 N9c24c43efaf44c39a9d47a361a751058 schema:name Xinchuan Zeng
    31 rdf:type schema:Person
    32 Na36a1d15b7e14b678964ac9f0dbedf7a rdf:first N1bbdc655005e4267a505c734bc59ad97
    33 rdf:rest rdf:nil
    34 Nb6814b25dd124020b04f372205b52125 rdf:first N9c24c43efaf44c39a9d47a361a751058
    35 rdf:rest Na36a1d15b7e14b678964ac9f0dbedf7a
    36 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    37 rdf:type schema:DefinedTerm
    38 sg:pub.10.1007/s10044-002-0188-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004610567
    39 https://doi.org/10.1007/s10044-002-0188-0
    40 rdf:type schema:CreativeWork
    41 https://doi.org/10.1016/j.knosys.2009.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027819381
    42 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...