Feature specification via semantic queries


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Stuart Bowers , Tom Jackson , Jim Karkanias , Dave Campbell , Brian Aust

ABSTRACT

Technology is described that includes a method of feature specification via semantic queries. The method can include the operation of obtaining a data set having an identifier for each data row and a plurality of data features for each data row. A semantic query can be received that can be applied to the dataset that is usable by a machine learning tool. A entity feature map can be supplied that has entities and associated features for use by the machine learning tool. Further, a query structure can be analyzed using the entity feature map to identify input from the dataset for the machine learning tool. More... »

Related SciGraph Publications

  • 1989-08. Self-organizing semantic maps in BIOLOGICAL CYBERNETICS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Stuart Bowers", 
            "type": "Person"
          }, 
          {
            "name": "Tom Jackson", 
            "type": "Person"
          }, 
          {
            "name": "Jim Karkanias", 
            "type": "Person"
          }, 
          {
            "name": "Dave Campbell", 
            "type": "Person"
          }, 
          {
            "name": "Brian Aust", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00203171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005902655", 
              "https://doi.org/10.1007/bf00203171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00203171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005902655", 
              "https://doi.org/10.1007/bf00203171"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    Technology is described that includes a method of feature specification via semantic queries. The method can include the operation of obtaining a data set having an identifier for each data row and a plurality of data features for each data row. A semantic query can be received that can be applied to the dataset that is usable by a machine learning tool. A entity feature map can be supplied that has entities and associated features for use by the machine learning tool. Further, a query structure can be analyzed using the entity feature map to identify input from the dataset for the machine learning tool.

    ", "id": "sg:patent.US-8756169-B2", "keywords": [ "specification", "semantics", "technology", "method", "operation", "Dataset", "identifier", "row", "plurality", "feature", "machine", "tool", "entity", "associated feature", "query", "input" ], "name": "Feature specification via semantic queries", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419815.0", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8756169-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:35", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b670b59c.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8756169-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8756169-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8756169-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8756169-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    57 TRIPLES      14 PREDICATES      30 URIs      23 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-8756169-B2 schema:about anzsrc-for:2746
    2 schema:author N7e22d1dc878a4606b8caa3f366909498
    3 schema:citation sg:pub.10.1007/bf00203171
    4 schema:description <p num="p-0001">Technology is described that includes a method of feature specification via semantic queries. The method can include the operation of obtaining a data set having an identifier for each data row and a plurality of data features for each data row. A semantic query can be received that can be applied to the dataset that is usable by a machine learning tool. A entity feature map can be supplied that has entities and associated features for use by the machine learning tool. Further, a query structure can be analyzed using the entity feature map to identify input from the dataset for the machine learning tool.</p>
    5 schema:keywords Dataset
    6 associated feature
    7 entity
    8 feature
    9 identifier
    10 input
    11 machine
    12 method
    13 operation
    14 plurality
    15 query
    16 row
    17 semantics
    18 specification
    19 technology
    20 tool
    21 schema:name Feature specification via semantic queries
    22 schema:recipient https://www.grid.ac/institutes/grid.419815.0
    23 schema:sameAs https://app.dimensions.ai/details/patent/US-8756169-B2
    24 schema:sdDatePublished 2019-03-07T15:35
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N20cd5fda1ff2495eb273c58d6aec3b13
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset patents
    29 rdf:type sgo:Patent
    30 N00d0e77aa53a4cefbbb97c02f4b00196 schema:name Brian Aust
    31 rdf:type schema:Person
    32 N20cd5fda1ff2495eb273c58d6aec3b13 schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 N27873d5364aa4cc98f58f4b10a07b79c rdf:first N72c8d7a19b3d4b19ace96df77ad4498d
    35 rdf:rest N8fe0644ec8b74d34a69f1ca852878615
    36 N72c8d7a19b3d4b19ace96df77ad4498d schema:name Jim Karkanias
    37 rdf:type schema:Person
    38 N7e22d1dc878a4606b8caa3f366909498 rdf:first Nd247f3a668bf41d68ddfda784561c16b
    39 rdf:rest Nc78b74295ee74e40ba80118eb781928e
    40 N8d1865cdd4244326b0ea33faae68568f schema:name Tom Jackson
    41 rdf:type schema:Person
    42 N8fe0644ec8b74d34a69f1ca852878615 rdf:first Na8a21039328e4f37bf994ba431d64eb9
    43 rdf:rest Ne6b754c6f3c647ffbc083b61fede7f11
    44 Na8a21039328e4f37bf994ba431d64eb9 schema:name Dave Campbell
    45 rdf:type schema:Person
    46 Nc78b74295ee74e40ba80118eb781928e rdf:first N8d1865cdd4244326b0ea33faae68568f
    47 rdf:rest N27873d5364aa4cc98f58f4b10a07b79c
    48 Nd247f3a668bf41d68ddfda784561c16b schema:name Stuart Bowers
    49 rdf:type schema:Person
    50 Ne6b754c6f3c647ffbc083b61fede7f11 rdf:first N00d0e77aa53a4cefbbb97c02f4b00196
    51 rdf:rest rdf:nil
    52 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    53 rdf:type schema:DefinedTerm
    54 sg:pub.10.1007/bf00203171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005902655
    55 https://doi.org/10.1007/bf00203171
    56 rdf:type schema:CreativeWork
    57 https://www.grid.ac/institutes/grid.419815.0 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...