Method for making populations of defined nucleic acid molecules


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Stephen H. Friend , Michele A. Cleary , Ernest M. COFFEY , Kristopher A. Killian , Gregory J. Hannon , Patrick Paddison

ABSTRACT

The present invention provides methods of making a population of nucleic acid molecules, wherein each nucleic acid molecule comprises a predetermined nucleic acid sequence, each of said methods comprising the steps of: (a) synthesizing, on a substrate, a population of nucleic acid molecules wherein: i) each synthesized nucleic acid molecule comprises a predetermined nucleic acid sequence; and ii) each synthesized nucleic acid molecule is localized to a defined area of said substrate; (b) harvesting said population of synthesized nucleic acid molecules from said substrate to yield harvested nucleic acid molecules; and (c) introducing said harvested nucleic acid molecules into vector molecules. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3039", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Stephen H. Friend", 
        "type": "Person"
      }, 
      {
        "name": "Michele A. Cleary", 
        "type": "Person"
      }, 
      {
        "name": "Ernest M. COFFEY", 
        "type": "Person"
      }, 
      {
        "name": "Kristopher A. Killian", 
        "type": "Person"
      }, 
      {
        "name": "Gregory J. Hannon", 
        "type": "Person"
      }, 
      {
        "name": "Patrick Paddison", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/13664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002141889", 
          "https://doi.org/10.1038/13664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(89)90280-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004053545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005983602", 
          "https://doi.org/10.1038/nmeth724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/86730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013279521", 
          "https://doi.org/10.1038/86730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-5663(96)83302-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018301713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.5.1874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019856430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.950180513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021286499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6.9.791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021563825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-4039(00)81376-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033308053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.10.2171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035929982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040686717", 
          "https://doi.org/10.1038/4447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/14.13.5399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046816905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.22.10700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048499172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.11.5022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050061899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/20.7.1679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052052601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053314410", 
          "https://doi.org/10.1038/35057141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0010633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja964427a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055866643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jo00125a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055968258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la00056a017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056139724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3413476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062613076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.7.741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083298514"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

The present invention provides methods of making a population of nucleic acid molecules, wherein each nucleic acid molecule comprises a predetermined nucleic acid sequence, each of said methods comprising the steps of: (a) synthesizing, on a substrate, a population of nucleic acid molecules wherein: i) each synthesized nucleic acid molecule comprises a predetermined nucleic acid sequence; and ii) each synthesized nucleic acid molecule is localized to a defined area of said substrate; (b) harvesting said population of synthesized nucleic acid molecules from said substrate to yield harvested nucleic acid molecules; and (c) introducing said harvested nucleic acid molecules into vector molecules.

", "id": "sg:patent.US-8753811-B2", "keywords": [ "method", "population", "nucleic acid molecule", "invention", "wherein", "nucleic acid sequence", "substrate", "defined area", "harvesting", "molecule" ], "name": "Method for making populations of defined nucleic acid molecules", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.225279.9", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8753811-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:35", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b670b59c.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8753811-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8753811-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8753811-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8753811-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      14 PREDICATES      46 URIs      17 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8753811-B2 schema:about anzsrc-for:3039
2 schema:author N7800a9554430444e960f061bdecf86ae
3 schema:citation sg:pub.10.1038/13664
4 sg:pub.10.1038/35057141
5 sg:pub.10.1038/4447
6 sg:pub.10.1038/86730
7 sg:pub.10.1038/nbt1296-1675
8 sg:pub.10.1038/nmeth724
9 https://doi.org/10.1002/bies.950180513
10 https://doi.org/10.1016/0888-7543(89)90280-2
11 https://doi.org/10.1016/0956-5663(96)83302-1
12 https://doi.org/10.1016/s0040-4039(00)81376-3
13 https://doi.org/10.1021/ac0010633
14 https://doi.org/10.1021/ja964427a
15 https://doi.org/10.1021/jo00125a010
16 https://doi.org/10.1021/la00056a017
17 https://doi.org/10.1073/pnas.87.5.1874
18 https://doi.org/10.1073/pnas.90.22.10700
19 https://doi.org/10.1073/pnas.91.11.5022
20 https://doi.org/10.1093/nar/14.13.5399
21 https://doi.org/10.1093/nar/20.7.1679
22 https://doi.org/10.1093/nar/29.10.2171
23 https://doi.org/10.1101/gr.6.9.791
24 https://doi.org/10.1101/gr.8.7.741
25 https://doi.org/10.1126/science.3413476
26 schema:description <p num="p-0001">The present invention provides methods of making a population of nucleic acid molecules, wherein each nucleic acid molecule comprises a predetermined nucleic acid sequence, each of said methods comprising the steps of: (a) synthesizing, on a substrate, a population of nucleic acid molecules wherein: i) each synthesized nucleic acid molecule comprises a predetermined nucleic acid sequence; and ii) each synthesized nucleic acid molecule is localized to a defined area of said substrate; (b) harvesting said population of synthesized nucleic acid molecules from said substrate to yield harvested nucleic acid molecules; and (c) introducing said harvested nucleic acid molecules into vector molecules.</p>
27 schema:keywords defined area
28 harvesting
29 invention
30 method
31 molecule
32 nucleic acid molecule
33 nucleic acid sequence
34 population
35 substrate
36 wherein
37 schema:name Method for making populations of defined nucleic acid molecules
38 schema:recipient https://www.grid.ac/institutes/grid.225279.9
39 schema:sameAs https://app.dimensions.ai/details/patent/US-8753811-B2
40 schema:sdDatePublished 2019-03-07T15:35
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N9b070cb16ec64947835e5bf2afff947c
43 sgo:license sg:explorer/license/
44 sgo:sdDataset patents
45 rdf:type sgo:Patent
46 N02172295d6de47e4854b49cb7ad47d9f rdf:first Nda939753cd1e45cc837b8e53306254d5
47 rdf:rest N483e5075e61e469eb9f4efd9d3afe46e
48 N28e40380c1be4e7f9a373472765a6e7e schema:name Michele A. Cleary
49 rdf:type schema:Person
50 N3a1415932f204c6bbd8670b4dee017d2 schema:name Patrick Paddison
51 rdf:type schema:Person
52 N483e5075e61e469eb9f4efd9d3afe46e rdf:first N3a1415932f204c6bbd8670b4dee017d2
53 rdf:rest rdf:nil
54 N646e6008e1f84068a28c478feb3575cd rdf:first N7084786ea1894ee184ed0a73ec7e6e17
55 rdf:rest N02172295d6de47e4854b49cb7ad47d9f
56 N7084786ea1894ee184ed0a73ec7e6e17 schema:name Kristopher A. Killian
57 rdf:type schema:Person
58 N76f08567250443fc9f44473b529d244e schema:name Ernest M. COFFEY
59 rdf:type schema:Person
60 N7800a9554430444e960f061bdecf86ae rdf:first Neb645bdff3ef431bb8153832f8f603c4
61 rdf:rest Ne40255b9b2f84a1c98b9d7b317a108ee
62 N9b070cb16ec64947835e5bf2afff947c schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nad1c5506f9e94381bc907b21716b3865 rdf:first N76f08567250443fc9f44473b529d244e
65 rdf:rest N646e6008e1f84068a28c478feb3575cd
66 Nda939753cd1e45cc837b8e53306254d5 schema:name Gregory J. Hannon
67 rdf:type schema:Person
68 Ne40255b9b2f84a1c98b9d7b317a108ee rdf:first N28e40380c1be4e7f9a373472765a6e7e
69 rdf:rest Nad1c5506f9e94381bc907b21716b3865
70 Neb645bdff3ef431bb8153832f8f603c4 schema:name Stephen H. Friend
71 rdf:type schema:Person
72 anzsrc-for:3039 schema:inDefinedTermSet anzsrc-for:
73 rdf:type schema:DefinedTerm
74 sg:pub.10.1038/13664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002141889
75 https://doi.org/10.1038/13664
76 rdf:type schema:CreativeWork
77 sg:pub.10.1038/35057141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053314410
78 https://doi.org/10.1038/35057141
79 rdf:type schema:CreativeWork
80 sg:pub.10.1038/4447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040686717
81 https://doi.org/10.1038/4447
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/86730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013279521
84 https://doi.org/10.1038/86730
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
87 https://doi.org/10.1038/nbt1296-1675
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/nmeth724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005983602
90 https://doi.org/10.1038/nmeth724
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/bies.950180513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021286499
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0888-7543(89)90280-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004053545
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0956-5663(96)83302-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018301713
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0040-4039(00)81376-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033308053
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1021/ac0010633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054972305
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1021/ja964427a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055866643
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/jo00125a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055968258
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/la00056a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056139724
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1073/pnas.87.5.1874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019856430
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1073/pnas.90.22.10700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048499172
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1073/pnas.91.11.5022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061899
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1093/nar/14.13.5399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046816905
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1093/nar/20.7.1679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052052601
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1093/nar/29.10.2171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035929982
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1101/gr.6.9.791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021563825
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1101/gr.8.7.741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083298514
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1126/science.3413476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062613076
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.225279.9 schema:Organization
 




Preview window. Press ESC to close (or click here)


...