Coherent quantum information transfer between topological and conventional qubits


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Parsa Bonderson , Roman M. Lutchyn

ABSTRACT

Computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits are disclosed. A concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit is described. The disclosed device measures the joint (fermion) parity of the two different qubits by using the Aharonov-Casher effect in conjunction with an ancillary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows for the production of states in which the topological and conventional qubits are maximally entangled, and for teleporting quantum states between the topological and conventional quantum systems. More... »

Related SciGraph Publications

  • 2010-03. Quantum computers in NATURE
  • 2000-01. Quantum Invariants in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-12. The dynamics of a double-dot charge qubit embedded in a suspended phonon cavity in THE EUROPEAN PHYSICAL JOURNAL B
  • 2003-09. Quantum dynamics of a single vortex in NATURE
  • 2008-05. Quantum State Transfer via Parity Measurement in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2009-08. Controlled quantum state transfer via parity measurement in SCIENTIA SINICA PHYSICA MECHANICA & ASTRONOMICA
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2415", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Parsa Bonderson", 
            "type": "Person"
          }, 
          {
            "name": "Roman M. Lutchyn", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/revmodphys.79.1217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003826730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-007-9563-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016504875", 
              "https://doi.org/10.1007/s10773-007-9563-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10773-007-9563-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016504875", 
              "https://doi.org/10.1007/s10773-007-9563-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2009-00369-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016887064", 
              "https://doi.org/10.1140/epjb/e2009-00369-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-009-0155-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020123498", 
              "https://doi.org/10.1007/s11433-009-0155-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5430.1036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020187346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026793563", 
              "https://doi.org/10.1038/nature08812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.1083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028121061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00005524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029921948", 
              "https://doi.org/10.1007/pl00005524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031797204", 
              "https://doi.org/10.1038/nature01826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    Computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits are disclosed. A concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit is described. The disclosed device measures the joint (fermion) parity of the two different qubits by using the Aharonov-Casher effect in conjunction with an ancillary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows for the production of states in which the topological and conventional qubits are maximally entangled, and for teleporting quantum states between the topological and conventional quantum systems.

    ", "id": "sg:patent.US-8748196-B2", "keywords": [ "information transfer", "qubits", "bus", "quantum information", "concrete realization", "topological quantum", "network", "conventional semiconductor", "joint", "fermion", "parity", "superconducting", "measurement", "gate", "state", "quantum state", "quantum system" ], "name": "Coherent quantum information transfer between topological and conventional qubits", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419815.0", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8748196-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:34", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b65d5aab.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8748196-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8748196-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8748196-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8748196-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    81 TRIPLES      14 PREDICATES      41 URIs      24 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-8748196-B2 schema:about anzsrc-for:2415
    2 schema:author N84f222ee1b194de895b1b34ffcbeec57
    3 schema:citation sg:pub.10.1007/pl00005524
    4 sg:pub.10.1007/s10773-007-9563-3
    5 sg:pub.10.1007/s11433-009-0155-5
    6 sg:pub.10.1038/nature01826
    7 sg:pub.10.1038/nature08812
    8 sg:pub.10.1140/epjb/e2009-00369-x
    9 https://doi.org/10.1103/physrevlett.53.319
    10 https://doi.org/10.1103/physrevlett.70.1895
    11 https://doi.org/10.1103/revmodphys.79.1217
    12 https://doi.org/10.1103/revmodphys.80.1083
    13 https://doi.org/10.1126/science.285.5430.1036
    14 schema:description <p num="p-0001">Computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits are disclosed. A concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit is described. The disclosed device measures the joint (fermion) parity of the two different qubits by using the Aharonov-Casher effect in conjunction with an ancillary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows for the production of states in which the topological and conventional qubits are maximally entangled, and for teleporting quantum states between the topological and conventional quantum systems.</p>
    15 schema:keywords bus
    16 concrete realization
    17 conventional semiconductor
    18 fermion
    19 gate
    20 information transfer
    21 joint
    22 measurement
    23 network
    24 parity
    25 quantum information
    26 quantum state
    27 quantum system
    28 qubits
    29 state
    30 superconducting
    31 topological quantum
    32 schema:name Coherent quantum information transfer between topological and conventional qubits
    33 schema:recipient https://www.grid.ac/institutes/grid.419815.0
    34 schema:sameAs https://app.dimensions.ai/details/patent/US-8748196-B2
    35 schema:sdDatePublished 2019-03-07T15:34
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N038d1c1a95e5463d82631d1bd026eca3
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset patents
    40 rdf:type sgo:Patent
    41 N038d1c1a95e5463d82631d1bd026eca3 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N76eef0c02fd84277851c0bb5e7ef84fe rdf:first N9cdeaa8cdf2a47919ae54eb1d2fc8c72
    44 rdf:rest rdf:nil
    45 N84f222ee1b194de895b1b34ffcbeec57 rdf:first Ne2ab5a8b0f79428ba90624701a2d2b98
    46 rdf:rest N76eef0c02fd84277851c0bb5e7ef84fe
    47 N9cdeaa8cdf2a47919ae54eb1d2fc8c72 schema:name Roman M. Lutchyn
    48 rdf:type schema:Person
    49 Ne2ab5a8b0f79428ba90624701a2d2b98 schema:name Parsa Bonderson
    50 rdf:type schema:Person
    51 anzsrc-for:2415 schema:inDefinedTermSet anzsrc-for:
    52 rdf:type schema:DefinedTerm
    53 sg:pub.10.1007/pl00005524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029921948
    54 https://doi.org/10.1007/pl00005524
    55 rdf:type schema:CreativeWork
    56 sg:pub.10.1007/s10773-007-9563-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016504875
    57 https://doi.org/10.1007/s10773-007-9563-3
    58 rdf:type schema:CreativeWork
    59 sg:pub.10.1007/s11433-009-0155-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020123498
    60 https://doi.org/10.1007/s11433-009-0155-5
    61 rdf:type schema:CreativeWork
    62 sg:pub.10.1038/nature01826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031797204
    63 https://doi.org/10.1038/nature01826
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
    66 https://doi.org/10.1038/nature08812
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1140/epjb/e2009-00369-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016887064
    69 https://doi.org/10.1140/epjb/e2009-00369-x
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1103/physrevlett.53.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790876
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1103/physrevlett.70.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013951720
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1103/revmodphys.79.1217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003826730
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1103/revmodphys.80.1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028121061
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1126/science.285.5430.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020187346
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.419815.0 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...