Biological analysis arrangement and approach therefor


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Abbas El Gamal , Helmy Eltoukhy , Khaled Salama

ABSTRACT

Characteristics of a chemical or biological sample are detected using an approach involving light detection. According to an example embodiment of the present invention, an assaying arrangement including a light detector is adapted to detect light from a sample, such as a biological material. A signal corresponding to the detected light is used to characterize the sample, for example, by detecting a light-related property thereof. In one implementation, the assaying arrangement includes integrated circuitry having a light detector and a programmable processor, with the light detector generating a signal corresponding to the light and sending the signal to the processor. The processor provides an output corresponding to the signal and indicative of a characteristic of the sample. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2421", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Abbas El Gamal", 
        "type": "Person"
      }, 
      {
        "name": "Helmy Eltoukhy", 
        "type": "Person"
      }, 
      {
        "name": "Khaled Salama", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0003-2670(00)84507-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002386100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bio.1170090106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008088509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1997.2254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010765253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1993.1024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014768898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/19.12.3301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015811466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(85)90211-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024442409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(88)90041-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025278219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1996.0432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027675298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-9140(88)80047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031551719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(84)90324-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035550461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(69)90180-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040037537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321674a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041827788", 
          "https://doi.org/10.1038/321674a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/353338a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047956901", 
          "https://doi.org/10.1038/353338a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0996-1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050064454", 
          "https://doi.org/10.1038/nbt0996-1123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050729014", 
          "https://doi.org/10.1038/nbt1296-1681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1472-765x.1995.tb00993.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052015800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00111a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac50056a022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055012879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm9603314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055418273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408348808085620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058361222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5375.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5452.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568075"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Characteristics of a chemical or biological sample are detected using an approach involving light detection. According to an example embodiment of the present invention, an assaying arrangement including a light detector is adapted to detect light from a sample, such as a biological material. A signal corresponding to the detected light is used to characterize the sample, for example, by detecting a light-related property thereof. In one implementation, the assaying arrangement includes integrated circuitry having a light detector and a programmable processor, with the light detector generating a signal corresponding to the light and sending the signal to the processor. The processor provides an output corresponding to the signal and indicative of a characteristic of the sample.

", "id": "sg:patent.US-8709788-B2", "keywords": [ "biological analysis", "therefor", "characteristic", "biological sample", "light detection", "embodiment", "invention", "arrangement", "detector", "light", "sample", "biological material", "signal", "related property", "implementation", "integrated circuitry", "processor", "output" ], "name": "Biological analysis arrangement and approach therefor", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.168010.e", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8709788-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:29", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_03300925.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8709788-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8709788-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8709788-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8709788-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      14 PREDICATES      54 URIs      25 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8709788-B2 schema:about anzsrc-for:2421
2 schema:author Nfc4e140ba6694ef2ac601516245e1a05
3 schema:citation sg:pub.10.1038/321674a0
4 sg:pub.10.1038/353338a0
5 sg:pub.10.1038/nature03959
6 sg:pub.10.1038/nbt0996-1123
7 sg:pub.10.1038/nbt1296-1681
8 https://doi.org/10.1002/bio.1170090106
9 https://doi.org/10.1006/abio.1993.1024
10 https://doi.org/10.1006/abio.1996.0432
11 https://doi.org/10.1006/abio.1997.2254
12 https://doi.org/10.1016/0003-2697(69)90180-8
13 https://doi.org/10.1016/0003-2697(84)90324-5
14 https://doi.org/10.1016/0003-2697(85)90211-8
15 https://doi.org/10.1016/0003-2697(88)90041-3
16 https://doi.org/10.1016/0039-9140(88)80047-x
17 https://doi.org/10.1016/s0003-2670(00)84507-9
18 https://doi.org/10.1021/ac00111a022
19 https://doi.org/10.1021/ac50056a022
20 https://doi.org/10.1021/cm9603314
21 https://doi.org/10.1080/10408348808085620
22 https://doi.org/10.1093/nar/19.12.3301
23 https://doi.org/10.1111/j.1472-765x.1995.tb00993.x
24 https://doi.org/10.1126/science.281.5375.363
25 https://doi.org/10.1126/science.287.5452.451
26 schema:description <p num="p-0001">Characteristics of a chemical or biological sample are detected using an approach involving light detection. According to an example embodiment of the present invention, an assaying arrangement including a light detector is adapted to detect light from a sample, such as a biological material. A signal corresponding to the detected light is used to characterize the sample, for example, by detecting a light-related property thereof. In one implementation, the assaying arrangement includes integrated circuitry having a light detector and a programmable processor, with the light detector generating a signal corresponding to the light and sending the signal to the processor. The processor provides an output corresponding to the signal and indicative of a characteristic of the sample.</p>
27 schema:keywords arrangement
28 biological analysis
29 biological material
30 biological sample
31 characteristic
32 detector
33 embodiment
34 implementation
35 integrated circuitry
36 invention
37 light
38 light detection
39 output
40 processor
41 related property
42 sample
43 signal
44 therefor
45 schema:name Biological analysis arrangement and approach therefor
46 schema:recipient https://www.grid.ac/institutes/grid.168010.e
47 schema:sameAs https://app.dimensions.ai/details/patent/US-8709788-B2
48 schema:sdDatePublished 2019-03-07T15:29
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N7bc349588fde4c1dba6cc76d82e6e486
51 sgo:license sg:explorer/license/
52 sgo:sdDataset patents
53 rdf:type sgo:Patent
54 N251526b323a94e90827ada37bf87bdf4 schema:name Khaled Salama
55 rdf:type schema:Person
56 N30f7f0e79fcf4df49c21f1199c0f9c50 schema:name Abbas El Gamal
57 rdf:type schema:Person
58 N6ee7550c26e34ed28fae0e2a0654feee schema:name Helmy Eltoukhy
59 rdf:type schema:Person
60 N72e5e5f223774720bd8c09384bb0fbee rdf:first N6ee7550c26e34ed28fae0e2a0654feee
61 rdf:rest Nfec91c32feaf4941a13a68648583a4b7
62 N7bc349588fde4c1dba6cc76d82e6e486 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nfc4e140ba6694ef2ac601516245e1a05 rdf:first N30f7f0e79fcf4df49c21f1199c0f9c50
65 rdf:rest N72e5e5f223774720bd8c09384bb0fbee
66 Nfec91c32feaf4941a13a68648583a4b7 rdf:first N251526b323a94e90827ada37bf87bdf4
67 rdf:rest rdf:nil
68 anzsrc-for:2421 schema:inDefinedTermSet anzsrc-for:
69 rdf:type schema:DefinedTerm
70 sg:pub.10.1038/321674a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041827788
71 https://doi.org/10.1038/321674a0
72 rdf:type schema:CreativeWork
73 sg:pub.10.1038/353338a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047956901
74 https://doi.org/10.1038/353338a0
75 rdf:type schema:CreativeWork
76 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
77 https://doi.org/10.1038/nature03959
78 rdf:type schema:CreativeWork
79 sg:pub.10.1038/nbt0996-1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050064454
80 https://doi.org/10.1038/nbt0996-1123
81 rdf:type schema:CreativeWork
82 sg:pub.10.1038/nbt1296-1681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050729014
83 https://doi.org/10.1038/nbt1296-1681
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/bio.1170090106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008088509
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1006/abio.1993.1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014768898
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1006/abio.1996.0432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027675298
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1006/abio.1997.2254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010765253
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0003-2697(69)90180-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040037537
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0003-2697(84)90324-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035550461
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0003-2697(85)90211-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024442409
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0003-2697(88)90041-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025278219
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0039-9140(88)80047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031551719
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0003-2670(00)84507-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002386100
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/ac00111a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054972608
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/ac50056a022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055012879
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/cm9603314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055418273
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1080/10408348808085620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058361222
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1093/nar/19.12.3301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015811466
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1111/j.1472-765x.1995.tb00993.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052015800
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1126/science.281.5375.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561814
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1126/science.287.5452.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568075
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.168010.e schema:Organization
 




Preview window. Press ESC to close (or click here)


...