All-spin logic devices


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Behtash Behin-Aein , Srikant Srinivasan , Angik Sarkar , Supriyo Datta , Sayeef Salahuddin

ABSTRACT

Illustrative embodiments of all-spin logic devices, circuits, and methods are disclosed. In one embodiment, an all-spin logic device may include a first nanomagnet, a second nanomagnet, and a spin-coherent channel extending between the first and second nanomagnets. The spin-coherent channel may be configured to conduct a spin current from the first nanomagnet to the second nanomagnet to determine a state of the second nanomagnet in response to a state of the first nanomagnet. More... »

Related SciGraph Publications

  • 2007-05-31. Spin-based logic in semiconductors for reconfigurable large-scale circuits in NATURE
  • 2010-04. Proposal for an all-spin logic device with built-in memory in NATURE NANOTECHNOLOGY
  • 2006-10. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets in NATURE MATERIALS
  • 2008-11. Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching in NATURE PHYSICS
  • 2007-03. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices in NATURE PHYSICS
  • 2002-04. Electrical detection of spin precession in a metallic mesoscopic spin valve in NATURE
  • 2007-08. Electronic spin transport and spin precession in single graphene layers at room temperature in NATURE
  • 2008-01. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions in NATURE PHYSICS
  • 2006-08. Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium in JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
  • 2006-03. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy in NATURE MATERIALS
  • 2007-08. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact in NATURE PHYSICS
  • 2007-06. Spin-torque oscillator using a perpendicular polarizer and a planar free layer in NATURE MATERIALS
  • 2008-10. Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices in NATURE PHYSICS
  • 2007-05. Electronic measurement and control of spin transport in silicon in NATURE
  • 2008-02. An all-metallic logic gate based on current-driven domain wall motion in NATURE NANOTECHNOLOGY
  • 2003-10. Programmable computing with a single magnetoresistive element in NATURE
  • 1982-12. The thermodynamics of computation—a review in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2008-01. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions in NATURE PHYSICS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2421", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Behtash Behin-Aein", 
            "type": "Person"
          }, 
          {
            "name": "Srikant Srinivasan", 
            "type": "Person"
          }, 
          {
            "name": "Angik Sarkar", 
            "type": "Person"
          }, 
          {
            "name": "Supriyo Datta", 
            "type": "Person"
          }, 
          {
            "name": "Sayeef Salahuddin", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000034370", 
              "https://doi.org/10.1038/nphys543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004591182", 
              "https://doi.org/10.1038/nature06037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007469159", 
              "https://doi.org/10.1038/nnano.2008.1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2006.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007668625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010406824", 
              "https://doi.org/10.1038/nmat1905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02084158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014354438", 
              "https://doi.org/10.1007/bf02084158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02084158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014354438", 
              "https://doi.org/10.1007/bf02084158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018605241", 
              "https://doi.org/10.1038/nature02014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cta.226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019789723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022452901", 
              "https://doi.org/10.1038/nnano.2010.31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1187597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023692147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024794148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3567772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030443313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031258398", 
              "https://doi.org/10.1038/nphys784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416713a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032410236", 
              "https://doi.org/10.1038/416713a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034992017", 
              "https://doi.org/10.1038/nphys1095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036586305", 
              "https://doi.org/10.1038/nphys673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-8853(99)00453-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037589400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038046463", 
              "https://doi.org/10.1038/nature05803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041636891", 
              "https://doi.org/10.1038/nphys783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042288684", 
              "https://doi.org/10.1038/nmat1595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10948-006-0148-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043620302", 
              "https://doi.org/10.1007/s10948-006-0148-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045479408", 
              "https://doi.org/10.1038/nphys1036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048657821", 
              "https://doi.org/10.1038/nature05833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049261069", 
              "https://doi.org/10.1038/nmat1736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmmm.2007.12.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049697351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-4095(20020816)14:16<1116::aid-adma1116>3.0.co;2-c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053310492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801607p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1739271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057802540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.35.4959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060542486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.7099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.58.14937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060589383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060597797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.55.1790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060792184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.4281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jssc.2004.837945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061329000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ted.2003.816522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061591060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.1966.1065802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061665647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.1979.1060329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061669476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.2011.2159106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061683998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2002.807380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2009.2016657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061712410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1105722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1108813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1120506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062453227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5276.763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.287.5457.1466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062568518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.287.5460.1989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062568776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1147/rd.501.0081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063182885"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    Illustrative embodiments of all-spin logic devices, circuits, and methods are disclosed. In one embodiment, an all-spin logic device may include a first nanomagnet, a second nanomagnet, and a spin-coherent channel extending between the first and second nanomagnets. The spin-coherent channel may be configured to conduct a spin current from the first nanomagnet to the second nanomagnet to determine a state of the second nanomagnet in response to a state of the first nanomagnet.

    ", "id": "sg:patent.US-8558571-B2", "keywords": [ "logic device", "embodiment", "circuit", "method", "nanomagnets", "spin", "state" ], "name": "All-spin logic devices", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.301036.7", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8558571-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:29", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_03300925.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8558571-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8558571-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8558571-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8558571-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    209 TRIPLES      14 PREDICATES      69 URIs      14 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-8558571-B2 schema:about anzsrc-for:2421
    2 schema:author N75ffd625c8554393b12e0c8145436a85
    3 schema:citation sg:pub.10.1007/bf02084158
    4 sg:pub.10.1007/s10948-006-0148-9
    5 sg:pub.10.1038/416713a
    6 sg:pub.10.1038/nature02014
    7 sg:pub.10.1038/nature05803
    8 sg:pub.10.1038/nature05833
    9 sg:pub.10.1038/nature06037
    10 sg:pub.10.1038/nmat1595
    11 sg:pub.10.1038/nmat1736
    12 sg:pub.10.1038/nmat1905
    13 sg:pub.10.1038/nnano.2008.1
    14 sg:pub.10.1038/nnano.2010.31
    15 sg:pub.10.1038/nphys1036
    16 sg:pub.10.1038/nphys1095
    17 sg:pub.10.1038/nphys543
    18 sg:pub.10.1038/nphys673
    19 sg:pub.10.1038/nphys783
    20 sg:pub.10.1038/nphys784
    21 https://doi.org/10.1002/1521-4095(20020816)14:16<1116::aid-adma1116>3.0.co;2-c
    22 https://doi.org/10.1002/cta.226
    23 https://doi.org/10.1016/j.jmmm.2007.12.008
    24 https://doi.org/10.1016/j.physrep.2006.01.001
    25 https://doi.org/10.1016/s0304-8853(99)00453-9
    26 https://doi.org/10.1021/nl801607p
    27 https://doi.org/10.1063/1.1739271
    28 https://doi.org/10.1063/1.3567772
    29 https://doi.org/10.1103/physrevb.35.4959
    30 https://doi.org/10.1103/physrevb.48.7099
    31 https://doi.org/10.1103/physrevb.54.9353
    32 https://doi.org/10.1103/physrevb.58.14937
    33 https://doi.org/10.1103/physrevb.62.570
    34 https://doi.org/10.1103/physrevlett.55.1790
    35 https://doi.org/10.1103/physrevlett.80.4281
    36 https://doi.org/10.1109/jssc.2004.837945
    37 https://doi.org/10.1109/ted.2003.816522
    38 https://doi.org/10.1109/tmag.1966.1065802
    39 https://doi.org/10.1109/tmag.1979.1060329
    40 https://doi.org/10.1109/tmag.2011.2159106
    41 https://doi.org/10.1109/tnano.2002.807380
    42 https://doi.org/10.1109/tnano.2009.2016657
    43 https://doi.org/10.1126/science.1065389
    44 https://doi.org/10.1126/science.1105722
    45 https://doi.org/10.1126/science.1108813
    46 https://doi.org/10.1126/science.1120506
    47 https://doi.org/10.1126/science.1187597
    48 https://doi.org/10.1126/science.273.5276.763
    49 https://doi.org/10.1126/science.287.5457.1466
    50 https://doi.org/10.1126/science.287.5460.1989
    51 https://doi.org/10.1147/rd.501.0081
    52 schema:description <p num="p-0001">Illustrative embodiments of all-spin logic devices, circuits, and methods are disclosed. In one embodiment, an all-spin logic device may include a first nanomagnet, a second nanomagnet, and a spin-coherent channel extending between the first and second nanomagnets. The spin-coherent channel may be configured to conduct a spin current from the first nanomagnet to the second nanomagnet to determine a state of the second nanomagnet in response to a state of the first nanomagnet.</p>
    53 schema:keywords circuit
    54 embodiment
    55 logic device
    56 method
    57 nanomagnets
    58 spin
    59 state
    60 schema:name All-spin logic devices
    61 schema:recipient https://www.grid.ac/institutes/grid.301036.7
    62 schema:sameAs https://app.dimensions.ai/details/patent/US-8558571-B2
    63 schema:sdDatePublished 2019-03-07T15:29
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nb043bbcca85446a78e38e7e547022891
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset patents
    68 rdf:type sgo:Patent
    69 N50abb97b117c4a2c956f1d0f703245b7 rdf:first N99720be8d6fc40dd9158913bcc39bd25
    70 rdf:rest Nad3814db7b0841598972c79c9cefc663
    71 N51a7ea50647b4fd58a4d74093676e65b schema:name Angik Sarkar
    72 rdf:type schema:Person
    73 N64b13a4e90fd4c0a985c3edbfe917dbc schema:name Sayeef Salahuddin
    74 rdf:type schema:Person
    75 N6a0a940f1c2e4424baec76890fe7de0c schema:name Behtash Behin-Aein
    76 rdf:type schema:Person
    77 N75ffd625c8554393b12e0c8145436a85 rdf:first N6a0a940f1c2e4424baec76890fe7de0c
    78 rdf:rest N50abb97b117c4a2c956f1d0f703245b7
    79 N99720be8d6fc40dd9158913bcc39bd25 schema:name Srikant Srinivasan
    80 rdf:type schema:Person
    81 Nad3814db7b0841598972c79c9cefc663 rdf:first N51a7ea50647b4fd58a4d74093676e65b
    82 rdf:rest Nfced48fae6ee43c18e732dbbc8ba191e
    83 Nb043bbcca85446a78e38e7e547022891 schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 Nf52b50934fb14ccc9b4eb77db2756d13 schema:name Supriyo Datta
    86 rdf:type schema:Person
    87 Nfced48fae6ee43c18e732dbbc8ba191e rdf:first Nf52b50934fb14ccc9b4eb77db2756d13
    88 rdf:rest Nfefb9fb7a9354d298cc1c1415392a1b4
    89 Nfefb9fb7a9354d298cc1c1415392a1b4 rdf:first N64b13a4e90fd4c0a985c3edbfe917dbc
    90 rdf:rest rdf:nil
    91 anzsrc-for:2421 schema:inDefinedTermSet anzsrc-for:
    92 rdf:type schema:DefinedTerm
    93 sg:pub.10.1007/bf02084158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014354438
    94 https://doi.org/10.1007/bf02084158
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s10948-006-0148-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043620302
    97 https://doi.org/10.1007/s10948-006-0148-9
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1038/416713a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032410236
    100 https://doi.org/10.1038/416713a
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1038/nature02014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018605241
    103 https://doi.org/10.1038/nature02014
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1038/nature05803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038046463
    106 https://doi.org/10.1038/nature05803
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1038/nature05833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048657821
    109 https://doi.org/10.1038/nature05833
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1038/nature06037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004591182
    112 https://doi.org/10.1038/nature06037
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nmat1595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042288684
    115 https://doi.org/10.1038/nmat1595
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/nmat1736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049261069
    118 https://doi.org/10.1038/nmat1736
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/nmat1905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010406824
    121 https://doi.org/10.1038/nmat1905
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nnano.2008.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007469159
    124 https://doi.org/10.1038/nnano.2008.1
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/nnano.2010.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022452901
    127 https://doi.org/10.1038/nnano.2010.31
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/nphys1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479408
    130 https://doi.org/10.1038/nphys1036
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/nphys1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034992017
    133 https://doi.org/10.1038/nphys1095
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1038/nphys543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000034370
    136 https://doi.org/10.1038/nphys543
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1038/nphys673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036586305
    139 https://doi.org/10.1038/nphys673
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/nphys783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041636891
    142 https://doi.org/10.1038/nphys783
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/nphys784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031258398
    145 https://doi.org/10.1038/nphys784
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1002/1521-4095(20020816)14:16<1116::aid-adma1116>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1053310492
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1002/cta.226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019789723
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.jmmm.2007.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049697351
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.physrep.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007668625
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0304-8853(99)00453-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037589400
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1021/nl801607p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221362
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1063/1.1739271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057802540
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1063/1.3567772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443313
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevb.35.4959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060542486
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevb.48.7099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568994
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevb.58.14937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589383
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevb.62.570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597797
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevlett.55.1790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792184
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevlett.80.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817457
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/jssc.2004.837945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061329000
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/ted.2003.816522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061591060
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/tmag.1966.1065802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061665647
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/tmag.1979.1060329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061669476
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1109/tmag.2011.2159106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061683998
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1109/tnano.2002.807380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711748
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1109/tnano.2009.2016657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061712410
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1126/science.1105722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451261
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1126/science.1120506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453227
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1126/science.1187597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023692147
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1126/science.273.5276.763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553810
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1126/science.287.5457.1466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568518
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1126/science.287.5460.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568776
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1147/rd.501.0081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063182885
    208 rdf:type schema:CreativeWork
    209 https://www.grid.ac/institutes/grid.301036.7 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...