Method using a nonlinear optical technique for detection of interactions involving a conformational change


Ontology type: sgo:Patent     


Patent Info

DATE

2013-07-30T00:00

AUTHORS

SALAFSKY JOSHUA S

ABSTRACT

A nonlinear optical technique, such as second or third harmonic or sum or difference frequency generation, is used to detect binding interactions, or the degree or extent of binding, that comprise conformational change. In one aspect of the present invention, the nonlinear optical technique detects a conformational change in a probe due to target binding. In another aspect of the invention, the nonlinear optical technique screens candidate probes by detecting a conformational change due to a probe-target interaction. In another aspect of the invention, the nonlinear optical technique screens candidate modulators of a probe-target interaction by detecting a conformational change in the presence of the modulator. More... »

Related SciGraph Publications

  • 1998-01. DNA chips: An array of possibilities in NATURE BIOTECHNOLOGY
  • 1997-02. Crystal structure of the Src family tyrosine kinase Hck in NATURE
  • 1996-03. Molecular Beacons: Probes that Fluoresce upon Hybridization in NATURE BIOTECHNOLOGY
  • 1999-01. Exploring the new world of the genome with DNA microarrays in NATURE GENETICS
  • 1999-08. Detection of PCR products using self-probing amplicons and fluorescence in NATURE BIOTECHNOLOGY
  • 1999-12. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel in NATURE
  • 2000-01. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays in NATURE BIOTECHNOLOGY
  • 1999-01. Making and reading microarrays in NATURE GENETICS
  • 1998-01. Multicolor molecular beacons for allele discrimination in NATURE BIOTECHNOLOGY
  • 1998-04. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis in NATURE BIOTECHNOLOGY
  • 2000-11. Wavelength-shifting molecular beacons in NATURE BIOTECHNOLOGY
  • 2000-02-03. Molecular Beacon-Based Homogeneous Fluorescence PCR Assay for the Diagnosis of Infectious Diseases in ANALYTICAL SCIENCES
  • 2001-04. Single-mismatch detection using gold-quenched fluorescent oligonucleotides in NATURE BIOTECHNOLOGY
  • 2006-08-23. A chemical toolkit for proteins — an expanded genetic code in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 1997-02. Three-dimensional structure of the tyrosine kinase c-Src in NATURE
  • 2001-09. Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays in APPLIED PHYSICS B
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "SALAFSKY JOSHUA S", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.2116/analsci.16.245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046656396", 
              "https://doi.org/10.2116/analsci.16.245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0396-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007118508", 
              "https://doi.org/10.1038/nbt0396-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385602a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034217411", 
              "https://doi.org/10.1038/385602a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038604506", 
              "https://doi.org/10.1038/4439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017284394", 
              "https://doi.org/10.1038/4462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/45561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019604079", 
              "https://doi.org/10.1038/45561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0198-49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027516191", 
              "https://doi.org/10.1038/nbt0198-49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003400100700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005780086", 
              "https://doi.org/10.1007/s003400100700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/11751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022921637", 
              "https://doi.org/10.1038/11751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0198-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031062035", 
              "https://doi.org/10.1038/nbt0198-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/385595a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032796118", 
              "https://doi.org/10.1038/385595a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/86762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040395283", 
              "https://doi.org/10.1038/86762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0498-359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040783973", 
              "https://doi.org/10.1038/nbt0498-359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027363158", 
              "https://doi.org/10.1038/nrm2005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/72006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024163161", 
              "https://doi.org/10.1038/72006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044094372", 
              "https://doi.org/10.1038/81192"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-07-30T00:00", 
        "description": "

    A nonlinear optical technique, such as second or third harmonic or sum or difference frequency generation, is used to detect binding interactions, or the degree or extent of binding, that comprise conformational change. In one aspect of the present invention, the nonlinear optical technique detects a conformational change in a probe due to target binding. In another aspect of the invention, the nonlinear optical technique screens candidate probes by detecting a conformational change due to a probe-target interaction. In another aspect of the invention, the nonlinear optical technique screens candidate modulators of a probe-target interaction by detecting a conformational change in the presence of the modulator.

    ", "endDate": "2022-06-06", "id": "sg:patent.US-8497073-B2", "name": "Method using a nonlinear optical technique for detection of interactions involving a conformational change", "sameAs": [ "https://app.dimensions.ai/details/patent/US-8497073-B2" ], "sdDataset": "patents", "sdDatePublished": "2022-08-04T17:25", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/patent/patent_38.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8497073-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8497073-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8497073-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8497073-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      14 PREDICATES      31 URIs      9 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-8497073-B2 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author Nbb6806b513a740d193b8fa29e9304eb0
    4 schema:citation sg:pub.10.1007/s003400100700
    5 sg:pub.10.1038/11751
    6 sg:pub.10.1038/385595a0
    7 sg:pub.10.1038/385602a0
    8 sg:pub.10.1038/4439
    9 sg:pub.10.1038/4462
    10 sg:pub.10.1038/45561
    11 sg:pub.10.1038/72006
    12 sg:pub.10.1038/81192
    13 sg:pub.10.1038/86762
    14 sg:pub.10.1038/nbt0198-27
    15 sg:pub.10.1038/nbt0198-49
    16 sg:pub.10.1038/nbt0396-303
    17 sg:pub.10.1038/nbt0498-359
    18 sg:pub.10.1038/nrm2005
    19 sg:pub.10.2116/analsci.16.245
    20 schema:datePublished 2013-07-30T00:00
    21 schema:description <p num="p-0001">A nonlinear optical technique, such as second or third harmonic or sum or difference frequency generation, is used to detect binding interactions, or the degree or extent of binding, that comprise conformational change. In one aspect of the present invention, the nonlinear optical technique detects a conformational change in a probe due to target binding. In another aspect of the invention, the nonlinear optical technique screens candidate probes by detecting a conformational change due to a probe-target interaction. In another aspect of the invention, the nonlinear optical technique screens candidate modulators of a probe-target interaction by detecting a conformational change in the presence of the modulator.</p>
    22 schema:endDate 2022-06-06
    23 schema:name Method using a nonlinear optical technique for detection of interactions involving a conformational change
    24 schema:sameAs https://app.dimensions.ai/details/patent/US-8497073-B2
    25 schema:sdDatePublished 2022-08-04T17:25
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N10cda1e1f9ba495c95f7846c25d3785a
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset patents
    30 rdf:type sgo:Patent
    31 N10cda1e1f9ba495c95f7846c25d3785a schema:name Springer Nature - SN SciGraph project
    32 rdf:type schema:Organization
    33 N43f76120070d4761afff08ca9949b0ce schema:name SALAFSKY JOSHUA S
    34 rdf:type schema:Person
    35 Nbb6806b513a740d193b8fa29e9304eb0 rdf:first N43f76120070d4761afff08ca9949b0ce
    36 rdf:rest rdf:nil
    37 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    38 rdf:type schema:DefinedTerm
    39 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    40 rdf:type schema:DefinedTerm
    41 sg:pub.10.1007/s003400100700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005780086
    42 https://doi.org/10.1007/s003400100700
    43 rdf:type schema:CreativeWork
    44 sg:pub.10.1038/11751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022921637
    45 https://doi.org/10.1038/11751
    46 rdf:type schema:CreativeWork
    47 sg:pub.10.1038/385595a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032796118
    48 https://doi.org/10.1038/385595a0
    49 rdf:type schema:CreativeWork
    50 sg:pub.10.1038/385602a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034217411
    51 https://doi.org/10.1038/385602a0
    52 rdf:type schema:CreativeWork
    53 sg:pub.10.1038/4439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038604506
    54 https://doi.org/10.1038/4439
    55 rdf:type schema:CreativeWork
    56 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
    57 https://doi.org/10.1038/4462
    58 rdf:type schema:CreativeWork
    59 sg:pub.10.1038/45561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019604079
    60 https://doi.org/10.1038/45561
    61 rdf:type schema:CreativeWork
    62 sg:pub.10.1038/72006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024163161
    63 https://doi.org/10.1038/72006
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1038/81192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044094372
    66 https://doi.org/10.1038/81192
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1038/86762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040395283
    69 https://doi.org/10.1038/86762
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1038/nbt0198-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031062035
    72 https://doi.org/10.1038/nbt0198-27
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1038/nbt0198-49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516191
    75 https://doi.org/10.1038/nbt0198-49
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1038/nbt0396-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007118508
    78 https://doi.org/10.1038/nbt0396-303
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1038/nbt0498-359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040783973
    81 https://doi.org/10.1038/nbt0498-359
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1038/nrm2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027363158
    84 https://doi.org/10.1038/nrm2005
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.2116/analsci.16.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046656396
    87 https://doi.org/10.2116/analsci.16.245
    88 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...