Method and system for detecting malicious behavioral patterns in a computer, using machine learning


Ontology type: sgo:Patent     


Patent Info

DATE

2013-07-16T00:00

AUTHORS

Robert Moskovitch , Dima Stopel , Zvi Boger , Yuval Shahar , Yuval Elovici

ABSTRACT

Method for detecting malicious behavioral patterns which are related to malicious software such as a computer worm in computerized systems that include data exchange channels with other systems over a data network. Accordingly, hardware and/or software parameters are determined in the computerized system that is can characterize known behavioral patterns thereof. Known malicious code samples are learned by a machine learning process, such as decision trees and artificial neural networks, and the results of the machine learning process are analyzed in respect to the behavioral patterns of the computerized system. Then known and unknown malicious code samples are identified according to the results of the machine learning process. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2766", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Robert Moskovitch", 
        "type": "Person"
      }, 
      {
        "name": "Dima Stopel", 
        "type": "Person"
      }, 
      {
        "name": "Zvi Boger", 
        "type": "Person"
      }, 
      {
        "name": "Yuval Shahar", 
        "type": "Person"
      }, 
      {
        "name": "Yuval Elovici", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0004-3702(86)90072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014162908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-3702(86)90072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014162908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007413511361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030336415", 
          "https://doi.org/10.1023/a:1007413511361"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-16T00:00", 
    "description": "

Method for detecting malicious behavioral patterns which are related to malicious software such as a computer worm in computerized systems that include data exchange channels with other systems over a data network. Accordingly, hardware and/or software parameters are determined in the computerized system that is can characterize known behavioral patterns thereof. Known malicious code samples are learned by a machine learning process, such as decision trees and artificial neural networks, and the results of the machine learning process are analyzed in respect to the behavioral patterns of the computerized system. Then known and unknown malicious code samples are identified according to the results of the machine learning process.

", "id": "sg:patent.US-8490194-B2", "keywords": [ "method", "behavioral pattern", "computer", "machine", "detecting", "malicious software", "computer security", "computerized system", "channel", "data network", "hardware", "parameter", "sample", "decision tree", "artificial neural network", "respect" ], "name": "Method and system for detecting malicious behavioral patterns in a computer, using machine learning", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.28390.30", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8490194-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:11", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00622.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8490194-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8490194-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8490194-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8490194-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      15 PREDICATES      33 URIs      24 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8490194-B2 schema:about anzsrc-for:2746
2 anzsrc-for:2766
3 schema:author Nb541fd5d78704c23bbb1e0b978801f36
4 schema:citation sg:pub.10.1023/a:1007413511361
5 https://doi.org/10.1016/0004-3702(86)90072-x
6 schema:datePublished 2013-07-16T00:00
7 schema:description <p num="p-0001">Method for detecting malicious behavioral patterns which are related to malicious software such as a computer worm in computerized systems that include data exchange channels with other systems over a data network. Accordingly, hardware and/or software parameters are determined in the computerized system that is can characterize known behavioral patterns thereof. Known malicious code samples are learned by a machine learning process, such as decision trees and artificial neural networks, and the results of the machine learning process are analyzed in respect to the behavioral patterns of the computerized system. Then known and unknown malicious code samples are identified according to the results of the machine learning process.</p>
8 schema:keywords artificial neural network
9 behavioral pattern
10 channel
11 computer
12 computer security
13 computerized system
14 data network
15 decision tree
16 detecting
17 hardware
18 machine
19 malicious software
20 method
21 parameter
22 respect
23 sample
24 schema:name Method and system for detecting malicious behavioral patterns in a computer, using machine learning
25 schema:recipient https://www.grid.ac/institutes/grid.28390.30
26 schema:sameAs https://app.dimensions.ai/details/patent/US-8490194-B2
27 schema:sdDatePublished 2019-04-18T10:11
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Na34e5485fd694bfb815748765076ed10
30 sgo:license sg:explorer/license/
31 sgo:sdDataset patents
32 rdf:type sgo:Patent
33 N0359d9b635eb45ee8a6fb7f649f3296e rdf:first N0b70858b2e7d4f9cbdb468ce016a9840
34 rdf:rest N1d5a27e0b7624a32a09fed5cb5e7e1e0
35 N0b70858b2e7d4f9cbdb468ce016a9840 schema:name Dima Stopel
36 rdf:type schema:Person
37 N0d545572aa0941a78d352f3920ebe429 rdf:first N27e3b64dc98146f8885f85ca6075dd61
38 rdf:rest rdf:nil
39 N1d5a27e0b7624a32a09fed5cb5e7e1e0 rdf:first N29ee064ac7424dc1be697b7566be0613
40 rdf:rest Nd4508a9456b8490683a30fccf34ba440
41 N27e3b64dc98146f8885f85ca6075dd61 schema:name Yuval Elovici
42 rdf:type schema:Person
43 N29ee064ac7424dc1be697b7566be0613 schema:name Zvi Boger
44 rdf:type schema:Person
45 N4eefbefb5a3048308cbc94606bcb797f schema:name Robert Moskovitch
46 rdf:type schema:Person
47 Na34e5485fd694bfb815748765076ed10 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nb10c2ac6b20d404397f996660c893ad4 schema:name Yuval Shahar
50 rdf:type schema:Person
51 Nb541fd5d78704c23bbb1e0b978801f36 rdf:first N4eefbefb5a3048308cbc94606bcb797f
52 rdf:rest N0359d9b635eb45ee8a6fb7f649f3296e
53 Nd4508a9456b8490683a30fccf34ba440 rdf:first Nb10c2ac6b20d404397f996660c893ad4
54 rdf:rest N0d545572aa0941a78d352f3920ebe429
55 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
56 rdf:type schema:DefinedTerm
57 anzsrc-for:2766 schema:inDefinedTermSet anzsrc-for:
58 rdf:type schema:DefinedTerm
59 sg:pub.10.1023/a:1007413511361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030336415
60 https://doi.org/10.1023/a:1007413511361
61 rdf:type schema:CreativeWork
62 https://doi.org/10.1016/0004-3702(86)90072-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014162908
63 rdf:type schema:CreativeWork
64 https://www.grid.ac/institutes/grid.28390.30 schema:Organization
 




Preview window. Press ESC to close (or click here)


...