Graph querying, graph motif mining and the discovery of clusters


Ontology type: sgo:Patent     


Patent Info

DATE

2013-03-12T00:00

AUTHORS

SINGH AMBUJ KUMAR , HE HUAHAI , RANU SAYAN

ABSTRACT

A method for analyzing, querying, and mining graph databases using subgraph and similarity querying. An index structure, known as a closure tree, is defined for topological summarization of a set of graphs. In addition, a significance model is created in which the graphs are transformed into histograms of primitive components. Finally, connected substructures or clusters, comprising paths or trees, are detected in networks found in the graph databases using a random walk technique and a repeated random walk technique. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/49", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/46", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/4605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/4901", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/4904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "SINGH AMBUJ KUMAR", 
        "type": "Person"
      }, 
      {
        "name": "HE HUAHAI", 
        "type": "Person"
      }, 
      {
        "name": "RANU SAYAN", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/415141a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484556", 
          "https://doi.org/10.1038/415141a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-5-r35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052229286", 
          "https://doi.org/10.1186/gb-2004-5-5-r35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017837373", 
          "https://doi.org/10.1038/nature750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773549", 
          "https://doi.org/10.1038/35001009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415180a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005267371", 
          "https://doi.org/10.1038/415180a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03-12T00:00", 
    "description": "

A method for analyzing, querying, and mining graph databases using subgraph and similarity querying. An index structure, known as a closure tree, is defined for topological summarization of a set of graphs. In addition, a significance model is created in which the graphs are transformed into histograms of primitive components. Finally, connected substructures or clusters, comprising paths or trees, are detected in networks found in the graph databases using a random walk technique and a repeated random walk technique.

", "endDate": "2027-02-27", "id": "sg:patent.US-8396884-B2", "name": "Graph querying, graph motif mining and the discovery of clusters", "recipient": [ { "id": "http://www.grid.ac/institutes/grid.30389.31", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8396884-B2" ], "sdDataset": "patents", "sdDatePublished": "2022-11-24T21:23", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/patent/patent_43.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8396884-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8396884-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8396884-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8396884-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      15 PREDICATES      24 URIs      9 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8396884-B2 schema:about anzsrc-for:46
2 anzsrc-for:4605
3 anzsrc-for:49
4 anzsrc-for:4901
5 anzsrc-for:4904
6 schema:author N87050cbda5194bbf950660c0064b0992
7 schema:citation sg:pub.10.1038/35001009
8 sg:pub.10.1038/415141a
9 sg:pub.10.1038/415180a
10 sg:pub.10.1038/nature750
11 sg:pub.10.1186/gb-2004-5-5-r35
12 schema:datePublished 2013-03-12T00:00
13 schema:description <p num="p-0001">A method for analyzing, querying, and mining graph databases using subgraph and similarity querying. An index structure, known as a closure tree, is defined for topological summarization of a set of graphs. In addition, a significance model is created in which the graphs are transformed into histograms of primitive components. Finally, connected substructures or clusters, comprising paths or trees, are detected in networks found in the graph databases using a random walk technique and a repeated random walk technique.</p>
14 schema:endDate 2027-02-27
15 schema:name Graph querying, graph motif mining and the discovery of clusters
16 schema:recipient grid-institutes:grid.30389.31
17 schema:sameAs https://app.dimensions.ai/details/patent/US-8396884-B2
18 schema:sdDatePublished 2022-11-24T21:23
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher N4781e0adf84b44c397c91e142872693c
21 sgo:license sg:explorer/license/
22 sgo:sdDataset patents
23 rdf:type sgo:Patent
24 N060f71b6e9434fd885e69d1f4ab2f14c rdf:first Ne1eb6884125e41c08521ddd652fa5cb3
25 rdf:rest rdf:nil
26 N4781e0adf84b44c397c91e142872693c schema:name Springer Nature - SN SciGraph project
27 rdf:type schema:Organization
28 N87050cbda5194bbf950660c0064b0992 rdf:first Nd559f3fdac884bb196ca40be91c35ce3
29 rdf:rest N8bde34e6b1cf4c4099a6f8574978bf73
30 N8bde34e6b1cf4c4099a6f8574978bf73 rdf:first Nd86cea7dd6744918bfe3cf2d717c7503
31 rdf:rest N060f71b6e9434fd885e69d1f4ab2f14c
32 Nd559f3fdac884bb196ca40be91c35ce3 schema:name SINGH AMBUJ KUMAR
33 rdf:type schema:Person
34 Nd86cea7dd6744918bfe3cf2d717c7503 schema:name HE HUAHAI
35 rdf:type schema:Person
36 Ne1eb6884125e41c08521ddd652fa5cb3 schema:name RANU SAYAN
37 rdf:type schema:Person
38 anzsrc-for:46 schema:inDefinedTermSet anzsrc-for:
39 rdf:type schema:DefinedTerm
40 anzsrc-for:4605 schema:inDefinedTermSet anzsrc-for:
41 rdf:type schema:DefinedTerm
42 anzsrc-for:49 schema:inDefinedTermSet anzsrc-for:
43 rdf:type schema:DefinedTerm
44 anzsrc-for:4901 schema:inDefinedTermSet anzsrc-for:
45 rdf:type schema:DefinedTerm
46 anzsrc-for:4904 schema:inDefinedTermSet anzsrc-for:
47 rdf:type schema:DefinedTerm
48 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
49 https://doi.org/10.1038/35001009
50 rdf:type schema:CreativeWork
51 sg:pub.10.1038/415141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484556
52 https://doi.org/10.1038/415141a
53 rdf:type schema:CreativeWork
54 sg:pub.10.1038/415180a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005267371
55 https://doi.org/10.1038/415180a
56 rdf:type schema:CreativeWork
57 sg:pub.10.1038/nature750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017837373
58 https://doi.org/10.1038/nature750
59 rdf:type schema:CreativeWork
60 sg:pub.10.1186/gb-2004-5-5-r35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052229286
61 https://doi.org/10.1186/gb-2004-5-5-r35
62 rdf:type schema:CreativeWork
63 grid-institutes:grid.30389.31 schema:Organization
 




Preview window. Press ESC to close (or click here)


...