Adaptive optimization methods


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

David E. Goldberg , Kumara Sastry , Fenando G. Lobo , Claudio F. Lima

ABSTRACT

Methods and systems for optimizing a solution set. A solution set is generated, and solutions in the solution set are evaluated. Desirable solutions from the solution set are selected. A structural model is created using the desirable solutions, and a surrogate fitness model is created based on the structural model and the desirable solutions. A new solution set may be generated and/or evaluated, based on analyzing at least one of the structural model and the surrogate fitness model, and determining a method for generating a new solution set and/or evaluating the new solution set based at least in part on the analyzing. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2581", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "David E. Goldberg", 
        "type": "Person"
      }, 
      {
        "name": "Kumara Sastry", 
        "type": "Person"
      }, 
      {
        "name": "Fenando G. Lobo", 
        "type": "Person"
      }, 
      {
        "name": "Claudio F. Lima", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00292732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003483159", 
          "https://doi.org/10.1007/bf00292732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00292732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003483159", 
          "https://doi.org/10.1007/bf00292732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00484855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014097723", 
          "https://doi.org/10.1007/bf00484855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1994.2.4.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019296290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1995.3.3.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-003-0328-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025730957", 
          "https://doi.org/10.1007/s00500-003-0328-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00433767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034634201", 
          "https://doi.org/10.1007/bf00433767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00433767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034634201", 
          "https://doi.org/10.1007/bf00433767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036537107", 
          "https://doi.org/10.1007/bf01743349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01743349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036537107", 
          "https://doi.org/10.1007/bf01743349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046316965", 
          "https://doi.org/10.1007/bf00994110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/evco.1999.7.4.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053216273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.797971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061172033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.949485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.207618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2002.800884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061604548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.533566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062161335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623494268522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/jep.9.1.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064531280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2110736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069766486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Methods and systems for optimizing a solution set. A solution set is generated, and solutions in the solution set are evaluated. Desirable solutions from the solution set are selected. A structural model is created using the desirable solutions, and a surrogate fitness model is created based on the structural model and the desirable solutions. A new solution set may be generated and/or evaluated, based on analyzing at least one of the structural model and the surrogate fitness model, and determining a method for generating a new solution set and/or evaluating the new solution set based at least in part on the analyzing.

", "id": "sg:patent.US-8131656-B2", "keywords": [ "optimization method", "method", "solution set", "solution", "structural model", "surrogate" ], "name": "Adaptive optimization methods", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.411030.7", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-8131656-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:37", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_ec415531.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-8131656-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-8131656-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-8131656-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-8131656-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      14 PREDICATES      37 URIs      13 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-8131656-B2 schema:about anzsrc-for:2581
2 schema:author N4b37e29ba9154d1682604b67d750388b
3 schema:citation sg:pub.10.1007/bf00292732
4 sg:pub.10.1007/bf00433767
5 sg:pub.10.1007/bf00484855
6 sg:pub.10.1007/bf00994110
7 sg:pub.10.1007/bf01743349
8 sg:pub.10.1007/s00500-003-0328-5
9 https://doi.org/10.1109/4235.797971
10 https://doi.org/10.1109/5.949485
11 https://doi.org/10.1109/72.207618
12 https://doi.org/10.1109/tevc.2002.800884
13 https://doi.org/10.1115/1.533566
14 https://doi.org/10.1137/s1052623494268522
15 https://doi.org/10.1162/evco.1994.2.4.369
16 https://doi.org/10.1162/evco.1995.3.3.311
17 https://doi.org/10.1162/evco.1999.7.4.331
18 https://doi.org/10.1214/aos/1176344136
19 https://doi.org/10.1257/jep.9.1.3
20 https://doi.org/10.2307/2110736
21 schema:description <p num="p-0001">Methods and systems for optimizing a solution set. A solution set is generated, and solutions in the solution set are evaluated. Desirable solutions from the solution set are selected. A structural model is created using the desirable solutions, and a surrogate fitness model is created based on the structural model and the desirable solutions. A new solution set may be generated and/or evaluated, based on analyzing at least one of the structural model and the surrogate fitness model, and determining a method for generating a new solution set and/or evaluating the new solution set based at least in part on the analyzing.</p>
22 schema:keywords method
23 optimization method
24 solution
25 solution set
26 structural model
27 surrogate
28 schema:name Adaptive optimization methods
29 schema:recipient https://www.grid.ac/institutes/grid.411030.7
30 schema:sameAs https://app.dimensions.ai/details/patent/US-8131656-B2
31 schema:sdDatePublished 2019-03-07T15:37
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N530c25c6b9264f3182f63bc309ce35ce
34 sgo:license sg:explorer/license/
35 sgo:sdDataset patents
36 rdf:type sgo:Patent
37 N0427aadcd9124a38bfa2543b6c0a3c70 rdf:first Nd4ed12fb502a44579d342eeb91113d49
38 rdf:rest rdf:nil
39 N36686e260c3b41849cfb8bd56ac5cb5d rdf:first N4036b37a4272439a966d82e099b51363
40 rdf:rest N589b351d86d34fdc94e61328525bcbf2
41 N4036b37a4272439a966d82e099b51363 schema:name Kumara Sastry
42 rdf:type schema:Person
43 N4b37e29ba9154d1682604b67d750388b rdf:first Ne1b621a8fd5c4aada184f084b338927a
44 rdf:rest N36686e260c3b41849cfb8bd56ac5cb5d
45 N530c25c6b9264f3182f63bc309ce35ce schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N589b351d86d34fdc94e61328525bcbf2 rdf:first Nf2bf6c5398f4436e906bc98ae296c0c1
48 rdf:rest N0427aadcd9124a38bfa2543b6c0a3c70
49 Nd4ed12fb502a44579d342eeb91113d49 schema:name Claudio F. Lima
50 rdf:type schema:Person
51 Ne1b621a8fd5c4aada184f084b338927a schema:name David E. Goldberg
52 rdf:type schema:Person
53 Nf2bf6c5398f4436e906bc98ae296c0c1 schema:name Fenando G. Lobo
54 rdf:type schema:Person
55 anzsrc-for:2581 schema:inDefinedTermSet anzsrc-for:
56 rdf:type schema:DefinedTerm
57 sg:pub.10.1007/bf00292732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003483159
58 https://doi.org/10.1007/bf00292732
59 rdf:type schema:CreativeWork
60 sg:pub.10.1007/bf00433767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034634201
61 https://doi.org/10.1007/bf00433767
62 rdf:type schema:CreativeWork
63 sg:pub.10.1007/bf00484855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014097723
64 https://doi.org/10.1007/bf00484855
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/bf00994110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046316965
67 https://doi.org/10.1007/bf00994110
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf01743349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036537107
70 https://doi.org/10.1007/bf01743349
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/s00500-003-0328-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025730957
73 https://doi.org/10.1007/s00500-003-0328-5
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1109/4235.797971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061172033
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1109/5.949485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180379
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1109/72.207618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218345
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1109/tevc.2002.800884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061604548
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1115/1.533566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062161335
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1137/s1052623494268522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883444
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1162/evco.1994.2.4.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019296290
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1162/evco.1995.3.3.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882266
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1162/evco.1999.7.4.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053216273
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1257/jep.9.1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064531280
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/2110736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069766486
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.411030.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...