Compression and compressed inversion of interaction data


Ontology type: sgo:Patent     


Patent Info

DATE

2011-05-17T00:00

AUTHORS

Francis X. Canning

ABSTRACT

A compression technique compresses interaction data. A fast method processes the compressed data without the need to first decompress the data. In one embodiment, the compression technique is used to compress data in an interaction matrix. The interaction matrix (such as a moment method impedance matrix) contains interaction data between sources (e.g., basis functions or expansion functions) and testers (e.g., testing functions). The sources are collected into groups of sources according to specified criteria. One useful criteria is based on grouping sources relatively close to one another. For each group of sources, a composite source is calculated. The testers are also collected into groups and composite testers are calculated. The use of composite sources and composite testers to compute couplings when the source and tester are not close to each other allows the interaction matrix to be computed as a sparse matrix with a block format. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2777", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Francis X. Canning", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s006070050015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001171166", 
          "https://doi.org/10.1007/s006070050015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(87)90140-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003548487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mop.4650071003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mop.4650071707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012694934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(90)90171-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013435612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1039488.1039494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015066517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2004.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038693698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-004-0099-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040595295", 
          "https://doi.org/10.1007/s00607-004-0099-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00607-004-0099-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040595295", 
          "https://doi.org/10.1007/s00607-004-0099-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-003-0511-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042237619", 
          "https://doi.org/10.1007/s00466-003-0511-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95rs01457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052547228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19890853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056773907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.996112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/43.97624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061174482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/74.250128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061220104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/74.706066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061220295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/74.80583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061220379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.222285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.511816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061233708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.558669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061233961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.660967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061234322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2004.831333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061495420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/temc.2005.857898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061602157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2005.844564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061677375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2005.844564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061677375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2006.871642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061678425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2006.890971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061679351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.399811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062351103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.413779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062365067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0711050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479896314418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479898341268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827594276412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884250"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-17T00:00", 
    "description": "

A compression technique compresses interaction data. A fast method processes the compressed data without the need to first decompress the data. In one embodiment, the compression technique is used to compress data in an interaction matrix. The interaction matrix (such as a moment method impedance matrix) contains interaction data between sources (e.g., basis functions or expansion functions) and testers (e.g., testing functions). The sources are collected into groups of sources according to specified criteria. One useful criteria is based on grouping sources relatively close to one another. For each group of sources, a composite source is calculated. The testers are also collected into groups and composite testers are calculated. The use of composite sources and composite testers to compute couplings when the source and tester are not close to each other allows the interaction matrix to be computed as a sparse matrix with a block format.

", "id": "sg:patent.US-7945430-B2", "keywords": [ "compression", "inversion", "interaction data", "compression technique", "fast method", "compressed data", "embodiment", "compress", "matrix", "method", "basis function", "expansion", "tester", "specified criterion", "criterion", "grouping", "composite", "coupling", "sparse matrix", "format" ], "name": "Compression and compressed inversion of interaction data", "sameAs": [ "https://app.dimensions.ai/details/patent/US-7945430-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:07", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00196.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7945430-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7945430-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7945430-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7945430-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      14 PREDICATES      65 URIs      28 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7945430-B2 schema:about anzsrc-for:2777
2 schema:author N44a48be777654bf3808297d864b6e554
3 schema:citation sg:pub.10.1007/s00466-003-0511-7
4 sg:pub.10.1007/s00607-004-0099-6
5 sg:pub.10.1007/s006070050015
6 https://doi.org/10.1002/mop.4650071003
7 https://doi.org/10.1002/mop.4650071707
8 https://doi.org/10.1016/0021-9991(87)90140-9
9 https://doi.org/10.1016/0021-9991(90)90171-v
10 https://doi.org/10.1016/j.jcp.2004.10.033
11 https://doi.org/10.1029/95rs01457
12 https://doi.org/10.1049/el:19890853
13 https://doi.org/10.1109/20.996112
14 https://doi.org/10.1109/43.97624
15 https://doi.org/10.1109/74.250128
16 https://doi.org/10.1109/74.706066
17 https://doi.org/10.1109/74.80583
18 https://doi.org/10.1109/8.1099
19 https://doi.org/10.1109/8.222285
20 https://doi.org/10.1109/8.511816
21 https://doi.org/10.1109/8.558669
22 https://doi.org/10.1109/8.660967
23 https://doi.org/10.1109/tap.2004.831333
24 https://doi.org/10.1109/temc.2005.857898
25 https://doi.org/10.1109/tmag.2005.844564
26 https://doi.org/10.1109/tmag.2006.871642
27 https://doi.org/10.1109/tmag.2006.890971
28 https://doi.org/10.1121/1.399811
29 https://doi.org/10.1121/1.413779
30 https://doi.org/10.1137/0711050
31 https://doi.org/10.1137/s0895479896314418
32 https://doi.org/10.1137/s0895479898341268
33 https://doi.org/10.1137/s1064827594276412
34 https://doi.org/10.1145/1039488.1039494
35 schema:datePublished 2011-05-17T00:00
36 schema:description <p num="p-0001">A compression technique compresses interaction data. A fast method processes the compressed data without the need to first decompress the data. In one embodiment, the compression technique is used to compress data in an interaction matrix. The interaction matrix (such as a moment method impedance matrix) contains interaction data between sources (e.g., basis functions or expansion functions) and testers (e.g., testing functions). The sources are collected into groups of sources according to specified criteria. One useful criteria is based on grouping sources relatively close to one another. For each group of sources, a composite source is calculated. The testers are also collected into groups and composite testers are calculated. The use of composite sources and composite testers to compute couplings when the source and tester are not close to each other allows the interaction matrix to be computed as a sparse matrix with a block format.</p>
37 schema:keywords basis function
38 composite
39 compress
40 compressed data
41 compression
42 compression technique
43 coupling
44 criterion
45 embodiment
46 expansion
47 fast method
48 format
49 grouping
50 interaction data
51 inversion
52 matrix
53 method
54 sparse matrix
55 specified criterion
56 tester
57 schema:name Compression and compressed inversion of interaction data
58 schema:sameAs https://app.dimensions.ai/details/patent/US-7945430-B2
59 schema:sdDatePublished 2019-04-18T10:07
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nbee549d60a3a4363aab048b6b35a8edb
62 sgo:license sg:explorer/license/
63 sgo:sdDataset patents
64 rdf:type sgo:Patent
65 N01fff49830834a38b5daef46e2d39529 schema:name Francis X. Canning
66 rdf:type schema:Person
67 N44a48be777654bf3808297d864b6e554 rdf:first N01fff49830834a38b5daef46e2d39529
68 rdf:rest rdf:nil
69 Nbee549d60a3a4363aab048b6b35a8edb schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 anzsrc-for:2777 schema:inDefinedTermSet anzsrc-for:
72 rdf:type schema:DefinedTerm
73 sg:pub.10.1007/s00466-003-0511-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042237619
74 https://doi.org/10.1007/s00466-003-0511-7
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s00607-004-0099-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040595295
77 https://doi.org/10.1007/s00607-004-0099-6
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s006070050015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001171166
80 https://doi.org/10.1007/s006070050015
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/mop.4650071003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007074976
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1002/mop.4650071707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012694934
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0021-9991(87)90140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003548487
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0021-9991(90)90171-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1013435612
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.jcp.2004.10.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038693698
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1029/95rs01457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052547228
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1049/el:19890853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056773907
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/20.996112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121022
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/43.97624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061174482
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/74.250128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061220104
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/74.706066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061220295
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/74.80583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061220379
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/8.1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232180
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/8.222285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232668
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/8.511816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061233708
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/8.558669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061233961
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/8.660967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061234322
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tap.2004.831333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061495420
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/temc.2005.857898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061602157
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tmag.2005.844564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061677375
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tmag.2006.871642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061678425
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/tmag.2006.890971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061679351
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1121/1.399811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062351103
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1121/1.413779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062365067
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1137/0711050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852207
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1137/s0895479896314418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882306
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/s0895479898341268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882433
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1137/s1064827594276412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884250
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/1039488.1039494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015066517
139 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...