Graph querying, graph motif mining and the discovery of clusters


Ontology type: sgo:Patent     


Patent Info

DATE

2011-04-26T00:00

AUTHORS

SINGH AMBUJ KUMAR , HE HUAHAI

ABSTRACT

A method for analyzing, querying, and mining graph databases using subgraph and similarity querying. An index structure, known as a closure tree, is defined for topological summarization of a set of graphs. In addition, a significance model is created in which the graphs are transformed into histograms of primitive components. Finally, connected substructures or clusters, comprising paths or trees, are detected in networks found in the graph databases using a random walk technique and a repeated random walk technique. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "SINGH AMBUJ KUMAR", 
        "type": "Person"
      }, 
      {
        "name": "HE HUAHAI", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35001009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035773549", 
          "https://doi.org/10.1038/35001009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415180a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005267371", 
          "https://doi.org/10.1038/415180a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-5-r35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052229286", 
          "https://doi.org/10.1186/gb-2004-5-5-r35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415141a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484556", 
          "https://doi.org/10.1038/415141a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017837373", 
          "https://doi.org/10.1038/nature750"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04-26T00:00", 
    "description": "

A method for analyzing, querying, and mining graph databases using subgraph and similarity querying. An index structure, known as a closure tree, is defined for topological summarization of a set of graphs. In addition, a significance model is created in which the graphs are transformed into histograms of primitive components. Finally, connected substructures or clusters, comprising paths or trees, are detected in networks found in the graph databases using a random walk technique and a repeated random walk technique.

", "endDate": "2028-06-20", "id": "sg:patent.US-7933915-B2", "name": "Graph querying, graph motif mining and the discovery of clusters", "recipient": [ { "id": "http://www.grid.ac/institutes/grid.30389.31", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7933915-B2" ], "sdDataset": "patents", "sdDatePublished": "2022-09-02T16:21", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/patent/patent_30.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7933915-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7933915-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7933915-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7933915-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

50 TRIPLES      15 PREDICATES      21 URIs      9 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7933915-B2 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nd2679e7474bf4177932827c1ed59ed23
4 schema:citation sg:pub.10.1038/35001009
5 sg:pub.10.1038/415141a
6 sg:pub.10.1038/415180a
7 sg:pub.10.1038/nature750
8 sg:pub.10.1186/gb-2004-5-5-r35
9 schema:datePublished 2011-04-26T00:00
10 schema:description <p num="p-0001">A method for analyzing, querying, and mining graph databases using subgraph and similarity querying. An index structure, known as a closure tree, is defined for topological summarization of a set of graphs. In addition, a significance model is created in which the graphs are transformed into histograms of primitive components. Finally, connected substructures or clusters, comprising paths or trees, are detected in networks found in the graph databases using a random walk technique and a repeated random walk technique.</p>
11 schema:endDate 2028-06-20
12 schema:name Graph querying, graph motif mining and the discovery of clusters
13 schema:recipient grid-institutes:grid.30389.31
14 schema:sameAs https://app.dimensions.ai/details/patent/US-7933915-B2
15 schema:sdDatePublished 2022-09-02T16:21
16 schema:sdLicense https://scigraph.springernature.com/explorer/license/
17 schema:sdPublisher N83cd929c2fb64435a26bfb8cc07f7a23
18 sgo:license sg:explorer/license/
19 sgo:sdDataset patents
20 rdf:type sgo:Patent
21 N380a0dbe2ba747b989939581752d3156 schema:name SINGH AMBUJ KUMAR
22 rdf:type schema:Person
23 N71259af06165431a8808858dd8ab049f rdf:first Ndd009c992801443bb1cd7092d4afc26f
24 rdf:rest rdf:nil
25 N83cd929c2fb64435a26bfb8cc07f7a23 schema:name Springer Nature - SN SciGraph project
26 rdf:type schema:Organization
27 Nd2679e7474bf4177932827c1ed59ed23 rdf:first N380a0dbe2ba747b989939581752d3156
28 rdf:rest N71259af06165431a8808858dd8ab049f
29 Ndd009c992801443bb1cd7092d4afc26f schema:name HE HUAHAI
30 rdf:type schema:Person
31 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
32 rdf:type schema:DefinedTerm
33 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
34 rdf:type schema:DefinedTerm
35 sg:pub.10.1038/35001009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035773549
36 https://doi.org/10.1038/35001009
37 rdf:type schema:CreativeWork
38 sg:pub.10.1038/415141a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484556
39 https://doi.org/10.1038/415141a
40 rdf:type schema:CreativeWork
41 sg:pub.10.1038/415180a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005267371
42 https://doi.org/10.1038/415180a
43 rdf:type schema:CreativeWork
44 sg:pub.10.1038/nature750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017837373
45 https://doi.org/10.1038/nature750
46 rdf:type schema:CreativeWork
47 sg:pub.10.1186/gb-2004-5-5-r35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052229286
48 https://doi.org/10.1186/gb-2004-5-5-r35
49 rdf:type schema:CreativeWork
50 grid-institutes:grid.30389.31 schema:Organization
 




Preview window. Press ESC to close (or click here)


...