Compression and compressed inversion of interaction data


Ontology type: sgo:Patent     


Patent Info

DATE

2010-06-22T00:00

AUTHORS

Francis X. Canning

ABSTRACT

A compression technique compresses interaction data. A fast method processes the compressed data without the need to first decompress the data. In one embodiment, the compression technique is used to compress data in an interaction matrix. The interaction matrix (such as a moment method impedance matrix) contains interaction data between sources (e.g., basis functions or expansion functions) and testers (e.g., testing functions). The sources are collected into groups of sources according to specified criteria. One useful criteria is based on grouping sources relatively close to one another. For each group of sources, a composite source is calculated. The testers are also collected into groups and composite testers are calculated. The use of composite sources and composite testers to compute couplings when the source and tester are not close to each other allows the interaction matrix to be computed as a sparse matrix with a block format. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2777", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Francis X. Canning", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s006070050015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001171166", 
          "https://doi.org/10.1007/s006070050015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(87)90140-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003548487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mop.4650071003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mop.4650071707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012694934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(74)90179-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028097533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95rs01457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052547228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19890853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056773907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/43.97624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061174482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/74.250128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061220104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/74.706066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061220295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/74.80583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061220379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.222285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061232668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.43601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061233438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.511816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061233708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.558669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061233961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/8.660967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061234322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.399811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062351103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.413779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062365067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0711050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479896314418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479898341268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827594276412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884250"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06-22T00:00", 
    "description": "

A compression technique compresses interaction data. A fast method processes the compressed data without the need to first decompress the data. In one embodiment, the compression technique is used to compress data in an interaction matrix. The interaction matrix (such as a moment method impedance matrix) contains interaction data between sources (e.g., basis functions or expansion functions) and testers (e.g., testing functions). The sources are collected into groups of sources according to specified criteria. One useful criteria is based on grouping sources relatively close to one another. For each group of sources, a composite source is calculated. The testers are also collected into groups and composite testers are calculated. The use of composite sources and composite testers to compute couplings when the source and tester are not close to each other allows the interaction matrix to be computed as a sparse matrix with a block format.

", "id": "sg:patent.US-7742900-B1", "keywords": [ "compression", "inversion", "interaction data", "compression technique", "fast method", "compressed data", "embodiment", "compress", "matrix", "method", "basis function", "expansion", "tester", "specified criterion", "criterion", "grouping", "composite", "coupling", "sparse matrix", "format" ], "name": "Compression and compressed inversion of interaction data", "sameAs": [ "https://app.dimensions.ai/details/patent/US-7742900-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00076.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7742900-B1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7742900-B1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7742900-B1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7742900-B1'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      14 PREDICATES      55 URIs      28 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7742900-B1 schema:about anzsrc-for:2777
2 schema:author N4e8e1dfea681437a947a656cff0fa799
3 schema:citation sg:pub.10.1007/s006070050015
4 https://doi.org/10.1002/mop.4650071003
5 https://doi.org/10.1002/mop.4650071707
6 https://doi.org/10.1016/0021-9991(87)90140-9
7 https://doi.org/10.1016/0022-247x(74)90179-6
8 https://doi.org/10.1029/95rs01457
9 https://doi.org/10.1049/el:19890853
10 https://doi.org/10.1109/43.97624
11 https://doi.org/10.1109/74.250128
12 https://doi.org/10.1109/74.706066
13 https://doi.org/10.1109/74.80583
14 https://doi.org/10.1109/8.222285
15 https://doi.org/10.1109/8.43601
16 https://doi.org/10.1109/8.511816
17 https://doi.org/10.1109/8.558669
18 https://doi.org/10.1109/8.660967
19 https://doi.org/10.1121/1.399811
20 https://doi.org/10.1121/1.413779
21 https://doi.org/10.1137/0711050
22 https://doi.org/10.1137/s0895479896314418
23 https://doi.org/10.1137/s0895479898341268
24 https://doi.org/10.1137/s1064827594276412
25 schema:datePublished 2010-06-22T00:00
26 schema:description <p num="p-0001">A compression technique compresses interaction data. A fast method processes the compressed data without the need to first decompress the data. In one embodiment, the compression technique is used to compress data in an interaction matrix. The interaction matrix (such as a moment method impedance matrix) contains interaction data between sources (e.g., basis functions or expansion functions) and testers (e.g., testing functions). The sources are collected into groups of sources according to specified criteria. One useful criteria is based on grouping sources relatively close to one another. For each group of sources, a composite source is calculated. The testers are also collected into groups and composite testers are calculated. The use of composite sources and composite testers to compute couplings when the source and tester are not close to each other allows the interaction matrix to be computed as a sparse matrix with a block format.</p>
27 schema:keywords basis function
28 composite
29 compress
30 compressed data
31 compression
32 compression technique
33 coupling
34 criterion
35 embodiment
36 expansion
37 fast method
38 format
39 grouping
40 interaction data
41 inversion
42 matrix
43 method
44 sparse matrix
45 specified criterion
46 tester
47 schema:name Compression and compressed inversion of interaction data
48 schema:sameAs https://app.dimensions.ai/details/patent/US-7742900-B1
49 schema:sdDatePublished 2019-04-18T10:05
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N67e6dae5fdcc4994a4b6127e3b330622
52 sgo:license sg:explorer/license/
53 sgo:sdDataset patents
54 rdf:type sgo:Patent
55 N4e8e1dfea681437a947a656cff0fa799 rdf:first N6448357441fc407b8495e1774b83c16b
56 rdf:rest rdf:nil
57 N6448357441fc407b8495e1774b83c16b schema:name Francis X. Canning
58 rdf:type schema:Person
59 N67e6dae5fdcc4994a4b6127e3b330622 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 anzsrc-for:2777 schema:inDefinedTermSet anzsrc-for:
62 rdf:type schema:DefinedTerm
63 sg:pub.10.1007/s006070050015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001171166
64 https://doi.org/10.1007/s006070050015
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1002/mop.4650071003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007074976
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1002/mop.4650071707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012694934
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1016/0021-9991(87)90140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003548487
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/0022-247x(74)90179-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028097533
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1029/95rs01457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052547228
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1049/el:19890853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056773907
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1109/43.97624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061174482
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1109/74.250128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061220104
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1109/74.706066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061220295
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1109/74.80583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061220379
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1109/8.222285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061232668
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1109/8.43601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061233438
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1109/8.511816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061233708
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/8.558669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061233961
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/8.660967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061234322
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1121/1.399811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062351103
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1121/1.413779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062365067
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1137/0711050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852207
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1137/s0895479896314418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882306
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1137/s0895479898341268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882433
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1137/s1064827594276412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884250
107 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...