Method of humanizing antibodies by matching canonical structure types CDRs


Ontology type: sgo:Patent     


Patent Info

DATE

2010-05-04T00:00

AUTHORS

Jefferson Foote

ABSTRACT

Disclosed herein are methods for humanizing antibodies based on selecting variable region framework sequences from human antibody genes by comparing canonical CDR structure types for CDR sequences of the variable region of a non-human antibody to canonical CDR structure types for corresponding CDRs from a library of human antibody sequences, preferably germline antibody gene segments. Human antibody variable regions having similar canonical CDR structure types to the non-human CDRs form a subset of member human antibody sequences from which to select human framework sequences. The subset members may be further ranked by amino acid similarity between the human and the non-human CDR sequences. Top ranking human sequences are selected to provide the framework sequences for constructing a chimeric antibody that functionally replaces human CDR sequences with the non-human CDR counterparts using the selected subset member human frameworks, thereby providing a humanized antibody of high affinity and low immunogenicity without need for comparing framework sequences between the non-human and human antibodies. Chimeric antibodies made according to the method are also disclosed. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Jefferson Foote", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0016-5085(99)70332-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000167923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002187628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002187628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2005.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002187628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-291x(05)80786-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005506818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0161-5890(91)90163-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0161-5890(91)90163-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321522a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007617918", 
          "https://doi.org/10.1038/321522a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0161-5890(99)00094-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008811498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(00)01741-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009482696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.22.10915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(87)90021-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013321498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(92)91010-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015460068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/332323a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016704652", 
          "https://doi.org/10.1038/332323a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(87)90412-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021276801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/341544a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030400388", 
          "https://doi.org/10.1038/341544a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(92)90636-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033306302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033431469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(92)90224-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035378122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.10.4285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035465241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1084/jem.132.2.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035555693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00264-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036893932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)00264-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036893932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.1999.0921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.1999.0921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.1999.0921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-5728(00)00423-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044272327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-0101(96)00043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045882874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1759(99)00138-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047047819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0292-163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048787453", 
          "https://doi.org/10.1038/nbt0292-163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01561573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052204236", 
          "https://doi.org/10.1007/bf01561573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01561573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052204236", 
          "https://doi.org/10.1007/bf01561573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.9.1.7821752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082523085"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05-04T00:00", 
    "description": "

Disclosed herein are methods for humanizing antibodies based on selecting variable region framework sequences from human antibody genes by comparing canonical CDR structure types for CDR sequences of the variable region of a non-human antibody to canonical CDR structure types for corresponding CDRs from a library of human antibody sequences, preferably germline antibody gene segments. Human antibody variable regions having similar canonical CDR structure types to the non-human CDRs form a subset of member human antibody sequences from which to select human framework sequences. The subset members may be further ranked by amino acid similarity between the human and the non-human CDR sequences. Top ranking human sequences are selected to provide the framework sequences for constructing a chimeric antibody that functionally replaces human CDR sequences with the non-human CDR counterparts using the selected subset member human frameworks, thereby providing a humanized antibody of high affinity and low immunogenicity without need for comparing framework sequences between the non-human and human antibodies. Chimeric antibodies made according to the method are also disclosed.

", "id": "sg:patent.US-7709226-B2", "keywords": [ "method", "antibody", "structure type", "variable region", "human antibody", "sequence", "CDR", "library", "antibody gene", "non-humans", "subset", "amino acid", "human sequence", "chimeric antibody", "selected subset", "humanized antibody", "high affinity", "low immunogenicity" ], "name": "Method of humanizing antibodies by matching canonical structure types CDRs", "sameAs": [ "https://app.dimensions.ai/details/patent/US-7709226-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00060.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7709226-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7709226-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7709226-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7709226-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      14 PREDICATES      57 URIs      26 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7709226-B2 schema:about anzsrc-for:3103
2 schema:author N386ae119a4e643638ec6d3d77f3e7a13
3 schema:citation sg:pub.10.1007/bf01561573
4 sg:pub.10.1038/321522a0
5 sg:pub.10.1038/332323a0
6 sg:pub.10.1038/341544a0
7 sg:pub.10.1038/nbt0292-163
8 https://doi.org/10.1006/jmbi.1996.0617
9 https://doi.org/10.1006/meth.1999.0921
10 https://doi.org/10.1016/0003-2697(87)90021-2
11 https://doi.org/10.1016/0022-2836(87)90412-8
12 https://doi.org/10.1016/0022-2836(92)90224-8
13 https://doi.org/10.1016/0022-2836(92)90636-x
14 https://doi.org/10.1016/0022-2836(92)91010-m
15 https://doi.org/10.1016/0041-0101(96)00043-8
16 https://doi.org/10.1016/0161-5890(91)90163-e
17 https://doi.org/10.1016/j.ymeth.2005.01.004
18 https://doi.org/10.1016/s0006-291x(05)80786-7
19 https://doi.org/10.1016/s0014-5793(00)01741-5
20 https://doi.org/10.1016/s0016-5085(99)70332-x
21 https://doi.org/10.1016/s0022-1759(99)00138-6
22 https://doi.org/10.1016/s0022-2836(02)00264-4
23 https://doi.org/10.1016/s0161-5890(99)00094-2
24 https://doi.org/10.1016/s0165-5728(00)00423-9
25 https://doi.org/10.1073/pnas.89.10.4285
26 https://doi.org/10.1073/pnas.89.22.10915
27 https://doi.org/10.1084/jem.132.2.211
28 https://doi.org/10.1096/fasebj.9.1.7821752
29 schema:datePublished 2010-05-04T00:00
30 schema:description <p num="p-0001">Disclosed herein are methods for humanizing antibodies based on selecting variable region framework sequences from human antibody genes by comparing canonical CDR structure types for CDR sequences of the variable region of a non-human antibody to canonical CDR structure types for corresponding CDRs from a library of human antibody sequences, preferably germline antibody gene segments. Human antibody variable regions having similar canonical CDR structure types to the non-human CDRs form a subset of member human antibody sequences from which to select human framework sequences. The subset members may be further ranked by amino acid similarity between the human and the non-human CDR sequences. Top ranking human sequences are selected to provide the framework sequences for constructing a chimeric antibody that functionally replaces human CDR sequences with the non-human CDR counterparts using the selected subset member human frameworks, thereby providing a humanized antibody of high affinity and low immunogenicity without need for comparing framework sequences between the non-human and human antibodies. Chimeric antibodies made according to the method are also disclosed.</p>
31 schema:keywords CDR
32 amino acid
33 antibody
34 antibody gene
35 chimeric antibody
36 high affinity
37 human antibody
38 human sequence
39 humanized antibody
40 library
41 low immunogenicity
42 method
43 non-humans
44 selected subset
45 sequence
46 structure type
47 subset
48 variable region
49 schema:name Method of humanizing antibodies by matching canonical structure types CDRs
50 schema:sameAs https://app.dimensions.ai/details/patent/US-7709226-B2
51 schema:sdDatePublished 2019-04-18T10:05
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N607afa7b07424ab2b9bd20f72646f0d8
54 sgo:license sg:explorer/license/
55 sgo:sdDataset patents
56 rdf:type sgo:Patent
57 N1ac0c76ebfeb460dab4e370ec3970e0b schema:name Jefferson Foote
58 rdf:type schema:Person
59 N386ae119a4e643638ec6d3d77f3e7a13 rdf:first N1ac0c76ebfeb460dab4e370ec3970e0b
60 rdf:rest rdf:nil
61 N607afa7b07424ab2b9bd20f72646f0d8 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 anzsrc-for:3103 schema:inDefinedTermSet anzsrc-for:
64 rdf:type schema:DefinedTerm
65 sg:pub.10.1007/bf01561573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052204236
66 https://doi.org/10.1007/bf01561573
67 rdf:type schema:CreativeWork
68 sg:pub.10.1038/321522a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007617918
69 https://doi.org/10.1038/321522a0
70 rdf:type schema:CreativeWork
71 sg:pub.10.1038/332323a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016704652
72 https://doi.org/10.1038/332323a0
73 rdf:type schema:CreativeWork
74 sg:pub.10.1038/341544a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030400388
75 https://doi.org/10.1038/341544a0
76 rdf:type schema:CreativeWork
77 sg:pub.10.1038/nbt0292-163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048787453
78 https://doi.org/10.1038/nbt0292-163
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1006/jmbi.1996.0617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033431469
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1006/meth.1999.0921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037182188
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0003-2697(87)90021-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013321498
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0022-2836(87)90412-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021276801
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0022-2836(92)90224-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035378122
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0022-2836(92)90636-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033306302
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0022-2836(92)91010-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1015460068
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0041-0101(96)00043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045882874
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0161-5890(91)90163-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1006220867
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.ymeth.2005.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002187628
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/s0006-291x(05)80786-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005506818
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0014-5793(00)01741-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009482696
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0016-5085(99)70332-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000167923
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0022-1759(99)00138-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047047819
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0022-2836(02)00264-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036893932
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0161-5890(99)00094-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008811498
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0165-5728(00)00423-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044272327
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1073/pnas.89.10.4285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035465241
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1073/pnas.89.22.10915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234644
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1084/jem.132.2.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035555693
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1096/fasebj.9.1.7821752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082523085
121 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...