Carbon nanotubes derivatized with diazonium species


Ontology type: sgo:Patent     


Patent Info

DATE

2010-04-06T00:00

AUTHORS

James M. Tour , Jeffrey L. Bahr , Jiping Yang

ABSTRACT

The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2471", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2447", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "James M. Tour", 
        "type": "Person"
      }, 
      {
        "name": "Jeffrey L. Bahr", 
        "type": "Person"
      }, 
      {
        "name": "Jiping Yang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0009-2614(95)00825-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000685182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(99)00713-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004069133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(97)00010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010533067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485857", 
          "https://doi.org/10.1038/354056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5297.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024344678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(98)00252-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026160349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(99)00973-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029867761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-4039(98)02165-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031305388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(99)01029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034488841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja963354s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035336394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja963354s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035336394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/cc9960001525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035475087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ms.24.080194.001315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042629547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5367.1253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043682209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(98)01026-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045038474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.291.5504.630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045299172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.1998.0337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050167136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm035349a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055410440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm035349a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055410440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00040a074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055701438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja000469u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055701850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja000469u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055701850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9845524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056129575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9845524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056129575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la961033o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056168127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la961033o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056168127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057690359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1289650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057692158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1318241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057693903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.470966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058049525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.273.5274.483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5386.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062562689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5465.494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.291.5505.851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062572880"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04-06T00:00", 
    "description": "

The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

", "id": "sg:patent.US-7691359-B2", "keywords": [ "carbon nanotube", "specie", "invention", "chemical modification", "derivatization", "single-wall carbon nanotube", "small diameter", "nm", "method", "chemical attachment", "organic compound", "nanotube", "composite material", "electronic application", "sensor device", "reaction", "situ generation", "compound", "significant change", "spectroscopic property", "functionality", "carbon", "electrochemical reduction", "chemical functionalization", "chemical group", "polymer matrix", "transfer", "mechanical strength", "Electric Conductivity", "polymer" ], "name": "Carbon nanotubes derivatized with diazonium species", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.21940.3e", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7691359-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00043.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7691359-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7691359-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7691359-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7691359-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      15 PREDICATES      77 URIs      38 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7691359-B2 schema:about anzsrc-for:2447
2 anzsrc-for:2471
3 anzsrc-for:2921
4 schema:author N081dfcba3612443f922dbd3c85ae6222
5 schema:citation sg:pub.10.1038/354056a0
6 https://doi.org/10.1016/0009-2614(95)00825-o
7 https://doi.org/10.1016/s0008-6223(97)00010-9
8 https://doi.org/10.1016/s0009-2614(98)01026-4
9 https://doi.org/10.1016/s0009-2614(99)00713-7
10 https://doi.org/10.1016/s0009-2614(99)00973-2
11 https://doi.org/10.1016/s0009-2614(99)01029-5
12 https://doi.org/10.1016/s0022-0728(98)00252-6
13 https://doi.org/10.1016/s0040-4039(98)02165-0
14 https://doi.org/10.1021/cm035349a
15 https://doi.org/10.1021/ja00040a074
16 https://doi.org/10.1021/ja000469u
17 https://doi.org/10.1021/ja963354s
18 https://doi.org/10.1021/jp9845524
19 https://doi.org/10.1021/la961033o
20 https://doi.org/10.1039/cc9960001525
21 https://doi.org/10.1063/1.124969
22 https://doi.org/10.1063/1.126252
23 https://doi.org/10.1063/1.1289650
24 https://doi.org/10.1063/1.1318241
25 https://doi.org/10.1063/1.470966
26 https://doi.org/10.1103/physrevlett.79.2738
27 https://doi.org/10.1126/science.273.5274.483
28 https://doi.org/10.1126/science.275.5297.187
29 https://doi.org/10.1126/science.280.5367.1253
30 https://doi.org/10.1126/science.282.5386.95
31 https://doi.org/10.1126/science.288.5465.494
32 https://doi.org/10.1126/science.291.5504.630
33 https://doi.org/10.1126/science.291.5505.851
34 https://doi.org/10.1146/annurev.ms.24.080194.001315
35 https://doi.org/10.1557/jmr.1998.0337
36 schema:datePublished 2010-04-06T00:00
37 schema:description <p num="p-0001">The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.</p>
38 schema:keywords Electric Conductivity
39 carbon
40 carbon nanotube
41 chemical attachment
42 chemical functionalization
43 chemical group
44 chemical modification
45 composite material
46 compound
47 derivatization
48 electrochemical reduction
49 electronic application
50 functionality
51 invention
52 mechanical strength
53 method
54 nanotube
55 nm
56 organic compound
57 polymer
58 polymer matrix
59 reaction
60 sensor device
61 significant change
62 single-wall carbon nanotube
63 situ generation
64 small diameter
65 specie
66 spectroscopic property
67 transfer
68 schema:name Carbon nanotubes derivatized with diazonium species
69 schema:recipient https://www.grid.ac/institutes/grid.21940.3e
70 schema:sameAs https://app.dimensions.ai/details/patent/US-7691359-B2
71 schema:sdDatePublished 2019-04-18T10:05
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N4ca96d33d3f34d6ba4bc6ed9fdcb4445
74 sgo:license sg:explorer/license/
75 sgo:sdDataset patents
76 rdf:type sgo:Patent
77 N081dfcba3612443f922dbd3c85ae6222 rdf:first N1d7a9f15845a44b1a5f8dbde380919e0
78 rdf:rest Ne3ac936c710446cc855cff62bcc6ff02
79 N1d7a9f15845a44b1a5f8dbde380919e0 schema:name James M. Tour
80 rdf:type schema:Person
81 N4ca96d33d3f34d6ba4bc6ed9fdcb4445 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N8bb64cc6a2a7440a9fa46cb4d0aa29ce schema:name Jiping Yang
84 rdf:type schema:Person
85 Ne3ac936c710446cc855cff62bcc6ff02 rdf:first Nf4d259e639f348ba9f7fd886e2833adc
86 rdf:rest Nfab9dbfa651c4832aa14f4fc472b3c38
87 Nf4d259e639f348ba9f7fd886e2833adc schema:name Jeffrey L. Bahr
88 rdf:type schema:Person
89 Nfab9dbfa651c4832aa14f4fc472b3c38 rdf:first N8bb64cc6a2a7440a9fa46cb4d0aa29ce
90 rdf:rest rdf:nil
91 anzsrc-for:2447 schema:inDefinedTermSet anzsrc-for:
92 rdf:type schema:DefinedTerm
93 anzsrc-for:2471 schema:inDefinedTermSet anzsrc-for:
94 rdf:type schema:DefinedTerm
95 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
96 rdf:type schema:DefinedTerm
97 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
98 https://doi.org/10.1038/354056a0
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0009-2614(95)00825-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1000685182
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0008-6223(97)00010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010533067
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/s0009-2614(98)01026-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045038474
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/s0009-2614(99)00713-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004069133
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0009-2614(99)00973-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867761
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0009-2614(99)01029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034488841
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0022-0728(98)00252-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026160349
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0040-4039(98)02165-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031305388
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/cm035349a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055410440
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/ja00040a074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701438
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/ja000469u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055701850
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/ja963354s schema:sameAs https://app.dimensions.ai/details/publication/pub.1035336394
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/jp9845524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056129575
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/la961033o schema:sameAs https://app.dimensions.ai/details/publication/pub.1056168127
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1039/cc9960001525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035475087
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.124969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689094
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.126252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690359
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1289650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057692158
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.1318241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057693903
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.470966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058049525
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.79.2738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815964
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/science.273.5274.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553701
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.275.5297.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024344678
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1126/science.280.5367.1253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043682209
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1126/science.282.5386.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062562689
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/science.288.5465.494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569226
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.291.5504.630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045299172
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.291.5505.851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572880
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1146/annurev.ms.24.080194.001315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042629547
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1557/jmr.1998.0337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050167136
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.21940.3e schema:Organization
 




Preview window. Press ESC to close (or click here)


...