Data warehousing, annotation and statistical analysis system


Ontology type: sgo:Patent     


Patent Info

DATE

2010-01-19T00:00

AUTHORS

Kurt Fellenberg , Nicole Hauser

ABSTRACT

The present invention relates to a database storage structure for the storage of a plurality of results from an experiment on a sample. The database storage structure includes a result storage table for storing the results from the experiment, one or more first annotation storage tables for storing a first set of variables, and one or more second annotation storage tables for storing a second limited set of variables. The one or more second annotation storage tables are further coupled to one or more concordance tables for storing a concordance between the second limited set of variables and a second list of annotations. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2358", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Kurt Fellenberg", 
        "type": "Person"
      }, 
      {
        "name": "Nicole Hauser", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1101/gr.10.4.431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001478155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9525(91)90420-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006619009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-9525(91)90420-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006619009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1296-457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010987019", 
          "https://doi.org/10.1038/ng1296-457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7552(94)90142-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015568804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7552(94)90142-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015568804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.4.300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018678741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018966042", 
          "https://doi.org/10.1038/35001676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018966042", 
          "https://doi.org/10.1038/35001676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.950180513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021286499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024602905", 
          "https://doi.org/10.1038/1670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/1670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024602905", 
          "https://doi.org/10.1038/1670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135585", 
          "https://doi.org/10.1038/35015701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028135585", 
          "https://doi.org/10.1038/35015701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6.7.639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028833356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.181597298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032576638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/1.2.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035672266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041049294", 
          "https://doi.org/10.1038/4478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041049294", 
          "https://doi.org/10.1038/4478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.11.1014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043029566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01-19T00:00", 
    "description": "

The present invention relates to a database storage structure for the storage of a plurality of results from an experiment on a sample. The database storage structure includes a result storage table for storing the results from the experiment, one or more first annotation storage tables for storing a first set of variables, and one or more second annotation storage tables for storing a second limited set of variables. The one or more second annotation storage tables are further coupled to one or more concordance tables for storing a concordance between the second limited set of variables and a second list of annotations.

", "id": "sg:patent.US-7650343-B2", "keywords": [ "data warehousing", "annotation", "statistical analysis", "invention", "storage structure", "storage", "plurality", "experiment", "sample", "first set", "variable", "limited set", "concordance", "list" ], "name": "Data warehousing, annotation and statistical analysis system", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.7497.d", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7650343-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00008.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7650343-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7650343-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7650343-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7650343-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      15 PREDICATES      46 URIs      22 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7650343-B2 schema:about anzsrc-for:2358
2 schema:author N014b9d616f0c476797ed54d18cd30430
3 schema:citation sg:pub.10.1038/1670
4 sg:pub.10.1038/35001676
5 sg:pub.10.1038/35015701
6 sg:pub.10.1038/4462
7 sg:pub.10.1038/4478
8 sg:pub.10.1038/nbt1296-1675
9 sg:pub.10.1038/ng1296-457
10 https://doi.org/10.1002/bies.950180513
11 https://doi.org/10.1016/0168-9525(91)90420-u
12 https://doi.org/10.1016/0169-7552(94)90142-2
13 https://doi.org/10.1073/pnas.181597298
14 https://doi.org/10.1073/pnas.95.25.14863
15 https://doi.org/10.1093/bib/1.2.190
16 https://doi.org/10.1093/bioinformatics/16.11.1014
17 https://doi.org/10.1093/bioinformatics/17.4.300
18 https://doi.org/10.1101/gr.10.4.431
19 https://doi.org/10.1101/gr.6.7.639
20 https://doi.org/10.1126/science.270.5235.467
21 schema:datePublished 2010-01-19T00:00
22 schema:description <p num="p-0001">The present invention relates to a database storage structure for the storage of a plurality of results from an experiment on a sample. The database storage structure includes a result storage table for storing the results from the experiment, one or more first annotation storage tables for storing a first set of variables, and one or more second annotation storage tables for storing a second limited set of variables. The one or more second annotation storage tables are further coupled to one or more concordance tables for storing a concordance between the second limited set of variables and a second list of annotations.</p>
23 schema:keywords annotation
24 concordance
25 data warehousing
26 experiment
27 first set
28 invention
29 limited set
30 list
31 plurality
32 sample
33 statistical analysis
34 storage
35 storage structure
36 variable
37 schema:name Data warehousing, annotation and statistical analysis system
38 schema:recipient https://www.grid.ac/institutes/grid.7497.d
39 schema:sameAs https://app.dimensions.ai/details/patent/US-7650343-B2
40 schema:sdDatePublished 2019-04-18T10:05
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N200a41d905124efb8ced3ffb8329d73f
43 sgo:license sg:explorer/license/
44 sgo:sdDataset patents
45 rdf:type sgo:Patent
46 N014b9d616f0c476797ed54d18cd30430 rdf:first N649b213dce134dd7b46ff3ba89984f40
47 rdf:rest N0dbf9d330db44faeabf82ed6e06a87ea
48 N0dbf9d330db44faeabf82ed6e06a87ea rdf:first N82ed4d5c76494ec898e1e14db50216d4
49 rdf:rest rdf:nil
50 N200a41d905124efb8ced3ffb8329d73f schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N649b213dce134dd7b46ff3ba89984f40 schema:name Kurt Fellenberg
53 rdf:type schema:Person
54 N82ed4d5c76494ec898e1e14db50216d4 schema:name Nicole Hauser
55 rdf:type schema:Person
56 anzsrc-for:2358 schema:inDefinedTermSet anzsrc-for:
57 rdf:type schema:DefinedTerm
58 sg:pub.10.1038/1670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024602905
59 https://doi.org/10.1038/1670
60 rdf:type schema:CreativeWork
61 sg:pub.10.1038/35001676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018966042
62 https://doi.org/10.1038/35001676
63 rdf:type schema:CreativeWork
64 sg:pub.10.1038/35015701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028135585
65 https://doi.org/10.1038/35015701
66 rdf:type schema:CreativeWork
67 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
68 https://doi.org/10.1038/4462
69 rdf:type schema:CreativeWork
70 sg:pub.10.1038/4478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041049294
71 https://doi.org/10.1038/4478
72 rdf:type schema:CreativeWork
73 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
74 https://doi.org/10.1038/nbt1296-1675
75 rdf:type schema:CreativeWork
76 sg:pub.10.1038/ng1296-457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987019
77 https://doi.org/10.1038/ng1296-457
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1002/bies.950180513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021286499
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0168-9525(91)90420-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1006619009
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0169-7552(94)90142-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015568804
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1073/pnas.181597298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032576638
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1093/bib/1.2.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035672266
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1093/bioinformatics/16.11.1014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043029566
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1093/bioinformatics/17.4.300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018678741
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1101/gr.10.4.431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001478155
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1101/gr.6.7.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028833356
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.7497.d schema:Organization
 




Preview window. Press ESC to close (or click here)


...