Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks


Ontology type: sgo:Patent     


Patent Info

DATE

2008-08-12T00:00

AUTHORS

Alex Nugent

ABSTRACT

Methods and systems are disclosed herein in which a physical neural network can be configured utilizing nanotechnology. Such a physical neural network can comprise a plurality of molecular conductors (e.g., nanoconductors) which form neural connections between pre-synaptic and post-synaptic components of the physical neural network. Additionally, a learning mechanism can be applied for implementing Hebbian learning via the physical neural network. Such a learning mechanism can utilize a voltage gradient or voltage gradient dependencies to implement Hebbian and/or anti-Hebbian plasticity within the physical neural network. The learning mechanism can also utilize pre-synaptic and post-synaptic frequencies to provide Hebbian and/or anti-Hebbian learning within the physical neural network. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Alex Nugent", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35023115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000730567", 
          "https://doi.org/10.1038/35023115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35023115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000730567", 
          "https://doi.org/10.1038/35023115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/13/1/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006229098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017715008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017715008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0351-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018196870", 
          "https://doi.org/10.1007/s00422-002-0351-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018868771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(98)00506-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037841902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037943488", 
          "https://doi.org/10.1038/nature00854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037943488", 
          "https://doi.org/10.1038/nature00854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/13/1/301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045550569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1063821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046634290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000049627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047080662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0024439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055717152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0024439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055717152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0102365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056045534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0102365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056045534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025941j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025941j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034240z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034240z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0342500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0342500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034412s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034412s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057690911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.127078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057691170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.127079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057691171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1290272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057692374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1373413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1396632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.7621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.7621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.603663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061131108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/28.658723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061143057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5992.931903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061195446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2002.804744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2002.804744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2002.804744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.2002.88.1.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075078988"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08-12T00:00", 
    "description": "

Methods and systems are disclosed herein in which a physical neural network can be configured utilizing nanotechnology. Such a physical neural network can comprise a plurality of molecular conductors (e.g., nanoconductors) which form neural connections between pre-synaptic and post-synaptic components of the physical neural network. Additionally, a learning mechanism can be applied for implementing Hebbian learning via the physical neural network. Such a learning mechanism can utilize a voltage gradient or voltage gradient dependencies to implement Hebbian and/or anti-Hebbian plasticity within the physical neural network. The learning mechanism can also utilize pre-synaptic and post-synaptic frequencies to provide Hebbian and/or anti-Hebbian learning within the physical neural network.

", "id": "sg:patent.US-7412428-B2", "keywords": [ "Neural Network", "method", "nanotechnology", "plurality", "molecular conductor", "neural connection", "synaptic component", "implementing", "Learning", "voltage gradient", "plasticity", "frequency" ], "name": "Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks", "sameAs": [ "https://app.dimensions.ai/details/patent/US-7412428-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03621.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7412428-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7412428-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7412428-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7412428-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      14 PREDICATES      55 URIs      20 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7412428-B2 schema:about anzsrc-for:2746
2 schema:author N9765aff5083546f985eb6139395a9ae9
3 schema:citation sg:pub.10.1007/s00422-002-0351-0
4 sg:pub.10.1038/35023115
5 sg:pub.10.1038/nature00854
6 https://doi.org/10.1016/s0169-4332(98)00506-6
7 https://doi.org/10.1021/ja0024439
8 https://doi.org/10.1021/jp0102365
9 https://doi.org/10.1021/nl025941j
10 https://doi.org/10.1021/nl034240z
11 https://doi.org/10.1021/nl0342500
12 https://doi.org/10.1021/nl034412s
13 https://doi.org/10.1063/1.123941
14 https://doi.org/10.1063/1.126811
15 https://doi.org/10.1063/1.127078
16 https://doi.org/10.1063/1.127079
17 https://doi.org/10.1063/1.1290272
18 https://doi.org/10.1063/1.1373413
19 https://doi.org/10.1063/1.1396632
20 https://doi.org/10.1088/0957-4484/13/1/301
21 https://doi.org/10.1088/0957-4484/13/1/308
22 https://doi.org/10.1103/physrevb.32.7621
23 https://doi.org/10.1103/physrevb.37.302
24 https://doi.org/10.1103/physreve.59.6896
25 https://doi.org/10.1109/23.603663
26 https://doi.org/10.1109/28.658723
27 https://doi.org/10.1109/5992.931903
28 https://doi.org/10.1109/tnano.2002.804744
29 https://doi.org/10.1126/science.1058782
30 https://doi.org/10.1126/science.1063821
31 https://doi.org/10.1152/jn.2002.88.1.507
32 https://doi.org/10.1159/000049627
33 schema:datePublished 2008-08-12T00:00
34 schema:description <p id="p-0001" num="0000">Methods and systems are disclosed herein in which a physical neural network can be configured utilizing nanotechnology. Such a physical neural network can comprise a plurality of molecular conductors (e.g., nanoconductors) which form neural connections between pre-synaptic and post-synaptic components of the physical neural network. Additionally, a learning mechanism can be applied for implementing Hebbian learning via the physical neural network. Such a learning mechanism can utilize a voltage gradient or voltage gradient dependencies to implement Hebbian and/or anti-Hebbian plasticity within the physical neural network. The learning mechanism can also utilize pre-synaptic and post-synaptic frequencies to provide Hebbian and/or anti-Hebbian learning within the physical neural network.</p>
35 schema:keywords Learning
36 Neural Network
37 frequency
38 implementing
39 method
40 molecular conductor
41 nanotechnology
42 neural connection
43 plasticity
44 plurality
45 synaptic component
46 voltage gradient
47 schema:name Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks
48 schema:sameAs https://app.dimensions.ai/details/patent/US-7412428-B2
49 schema:sdDatePublished 2019-04-18T10:31
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N2d3ec867bd084eccb5d4c791c36f3882
52 sgo:license sg:explorer/license/
53 sgo:sdDataset patents
54 rdf:type sgo:Patent
55 N12065de670144e2d9711f18f35c56344 schema:name Alex Nugent
56 rdf:type schema:Person
57 N2d3ec867bd084eccb5d4c791c36f3882 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N9765aff5083546f985eb6139395a9ae9 rdf:first N12065de670144e2d9711f18f35c56344
60 rdf:rest rdf:nil
61 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
62 rdf:type schema:DefinedTerm
63 sg:pub.10.1007/s00422-002-0351-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018196870
64 https://doi.org/10.1007/s00422-002-0351-0
65 rdf:type schema:CreativeWork
66 sg:pub.10.1038/35023115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000730567
67 https://doi.org/10.1038/35023115
68 rdf:type schema:CreativeWork
69 sg:pub.10.1038/nature00854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037943488
70 https://doi.org/10.1038/nature00854
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/s0169-4332(98)00506-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037841902
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1021/ja0024439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055717152
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1021/jp0102365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056045534
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1021/nl025941j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215474
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1021/nl034240z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215583
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1021/nl0342500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215585
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1021/nl034412s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215625
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1063/1.123941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018868771
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.126811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690911
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1063/1.127078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691170
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1063/1.127079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691171
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1063/1.1290272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057692374
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.1373413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700218
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.1396632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702537
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/0957-4484/13/1/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045550569
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1088/0957-4484/13/1/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006229098
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevb.32.7621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538980
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevb.37.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545295
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/physreve.59.6896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017715008
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/23.603663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061131108
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/28.658723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061143057
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/5992.931903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061195446
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tnano.2002.804744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711738
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1126/science.1058782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444451
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1126/science.1063821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634290
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1152/jn.2002.88.1.507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075078988
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1159/000049627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047080662
125 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...