Nanostructures, nanogrooves, and nanowires


Ontology type: sgo:Patent     


Patent Info

DATE

2008-08-05T00:00

AUTHORS

Ting Guo

ABSTRACT

Compositions and methods for making nanostructures and nanowires on substrates, including but not limited to metal-semiconductor nanostructures and semiconductor nanowires on semiconductor substrates. Particularly described are methods for making cobalt silicide nanostructures on silicon substrates and for making silicon nanowires on silicon substrates using cobalt nanoparticles. Nanogrooves and methods of making nanogrooves. Methods of making silanes. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3021", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Ting Guo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-0248(03)01412-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000574482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(03)01412-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000574482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/362522a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001467966", 
          "https://doi.org/10.1038/362522a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363603a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003373531", 
          "https://doi.org/10.1038/363603a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1057553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006274772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9317(00)00443-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007473421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar9700365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007995758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar9700365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007995758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b210027d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010426534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/2/307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015461554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5457.1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017892505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9317(02)00781-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028847215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9317(02)00781-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028847215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2003.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038498164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2003.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038498164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/56/11/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049911736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0012404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056042985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0012404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056042985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.104345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057651913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1342050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1534616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057717410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.93776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058133915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.94370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058134509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.97830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058137936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1343103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062166053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1057553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444348"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08-05T00:00", 
    "description": "

Compositions and methods for making nanostructures and nanowires on substrates, including but not limited to metal-semiconductor nanostructures and semiconductor nanowires on semiconductor substrates. Particularly described are methods for making cobalt silicide nanostructures on silicon substrates and for making silicon nanowires on silicon substrates using cobalt nanoparticles. Nanogrooves and methods of making nanogrooves. Methods of making silanes.

", "id": "sg:patent.US-7407887-B2", "keywords": [ "Nanostructures", "nanowires", "composition", "method", "substrate", "semiconductor nanostructures", "semiconductor nanowires", "semiconductor substrate", "silicon substrate", "silicon nanowires", "nanoparticles", "silane" ], "name": "Nanostructures, nanogrooves, and nanowires", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.30389.31", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7407887-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03619.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7407887-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7407887-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7407887-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7407887-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      15 PREDICATES      48 URIs      20 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7407887-B2 schema:about anzsrc-for:2921
2 anzsrc-for:3021
3 schema:author N93bdb150f05442f2a8160f6fa2cc42a7
4 schema:citation sg:pub.10.1038/362522a0
5 sg:pub.10.1038/363603a0
6 https://doi.org/10.1016/j.cplett.2003.07.015
7 https://doi.org/10.1016/s0022-0248(03)01412-x
8 https://doi.org/10.1016/s0167-9317(00)00443-3
9 https://doi.org/10.1016/s0167-9317(02)00781-5
10 https://doi.org/10.1021/ar9700365
11 https://doi.org/10.1021/jp0012404
12 https://doi.org/10.1039/b210027d
13 https://doi.org/10.1063/1.104345
14 https://doi.org/10.1063/1.124067
15 https://doi.org/10.1063/1.1342050
16 https://doi.org/10.1063/1.1534616
17 https://doi.org/10.1063/1.93776
18 https://doi.org/10.1063/1.94370
19 https://doi.org/10.1063/1.97830
20 https://doi.org/10.1088/0034-4885/56/11/002
21 https://doi.org/10.1088/0953-8984/15/2/307
22 https://doi.org/10.1116/1.1343103
23 https://doi.org/10.1126/science.1057553
24 https://doi.org/10.1126/science.287.5457.1471
25 schema:datePublished 2008-08-05T00:00
26 schema:description <p num="p-0001">Compositions and methods for making nanostructures and nanowires on substrates, including but not limited to metal-semiconductor nanostructures and semiconductor nanowires on semiconductor substrates. Particularly described are methods for making cobalt silicide nanostructures on silicon substrates and for making silicon nanowires on silicon substrates using cobalt nanoparticles. Nanogrooves and methods of making nanogrooves. Methods of making silanes.</p>
27 schema:keywords Nanostructures
28 composition
29 method
30 nanoparticles
31 nanowires
32 semiconductor nanostructures
33 semiconductor nanowires
34 semiconductor substrate
35 silane
36 silicon nanowires
37 silicon substrate
38 substrate
39 schema:name Nanostructures, nanogrooves, and nanowires
40 schema:recipient https://www.grid.ac/institutes/grid.30389.31
41 schema:sameAs https://app.dimensions.ai/details/patent/US-7407887-B2
42 schema:sdDatePublished 2019-04-18T10:31
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N872a2aec6198444b9abd456d16007fa7
45 sgo:license sg:explorer/license/
46 sgo:sdDataset patents
47 rdf:type sgo:Patent
48 N872a2aec6198444b9abd456d16007fa7 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N93bdb150f05442f2a8160f6fa2cc42a7 rdf:first Nf171326d2ecb42acbae0ed8bdbe62c7c
51 rdf:rest rdf:nil
52 Nf171326d2ecb42acbae0ed8bdbe62c7c schema:name Ting Guo
53 rdf:type schema:Person
54 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
55 rdf:type schema:DefinedTerm
56 anzsrc-for:3021 schema:inDefinedTermSet anzsrc-for:
57 rdf:type schema:DefinedTerm
58 sg:pub.10.1038/362522a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001467966
59 https://doi.org/10.1038/362522a0
60 rdf:type schema:CreativeWork
61 sg:pub.10.1038/363603a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003373531
62 https://doi.org/10.1038/363603a0
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1016/j.cplett.2003.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038498164
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1016/s0022-0248(03)01412-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000574482
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1016/s0167-9317(00)00443-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007473421
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1016/s0167-9317(02)00781-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028847215
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1021/ar9700365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007995758
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1021/jp0012404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056042985
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1039/b210027d schema:sameAs https://app.dimensions.ai/details/publication/pub.1010426534
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1063/1.104345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057651913
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1063/1.124067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688206
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1063/1.1342050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696768
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1063/1.1534616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057717410
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1063/1.93776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058133915
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.94370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058134509
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1063/1.97830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058137936
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1088/0034-4885/56/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911736
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1088/0953-8984/15/2/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015461554
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1116/1.1343103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062166053
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1126/science.1057553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006274772
99 https://app.dimensions.ai/details/publication/pub.1062444348
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1126/science.287.5457.1471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017892505
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.30389.31 schema:Organization
 




Preview window. Press ESC to close (or click here)


...