Method and hardware architecture for controlling a process or for processing data based on quantum soft computing


Ontology type: sgo:Patent     


Patent Info

DATE

2008-06-03T00:00

AUTHORS

Serguei Ulyanov , Gianguido Rizzotto , Ichiro Kurawaki , Serguei Panfilov , Fabio Ghisi , Paolo Amato , Massimo Porto

ABSTRACT

A method of controlling a process driven by a control signal for producing a corresponding output includes producing an error signal as a function of a state of the process and of a reference signal. A control signal is generated as a function of the error signal and of a parameter adjustment signal. The control signal is applied to the process. A derived signal representative of a quantity to be minimized is calculated by processing paired values of the state of the process and the control signal. A correction signal is calculated from a set of several different values of the control signal that minimizes the derived signal. The parameter adjustment signal is calculated by a neural network and fuzzy logic processor from the error signal and the correction signal. The correction signal is periodically calculated by a Quantum Genetic Search Algorithm that results from a merging of a genetic algorithm and a quantum search algorithm. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Serguei Ulyanov", 
        "type": "Person"
      }, 
      {
        "name": "Gianguido Rizzotto", 
        "type": "Person"
      }, 
      {
        "name": "Ichiro Kurawaki", 
        "type": "Person"
      }, 
      {
        "name": "Serguei Panfilov", 
        "type": "Person"
      }, 
      {
        "name": "Fabio Ghisi", 
        "type": "Person"
      }, 
      {
        "name": "Paolo Amato", 
        "type": "Person"
      }, 
      {
        "name": "Massimo Porto", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/30687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021296790", 
          "https://doi.org/10.1038/30687"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06-03T00:00", 
    "description": "

A method of controlling a process driven by a control signal for producing a corresponding output includes producing an error signal as a function of a state of the process and of a reference signal. A control signal is generated as a function of the error signal and of a parameter adjustment signal. The control signal is applied to the process. A derived signal representative of a quantity to be minimized is calculated by processing paired values of the state of the process and the control signal. A correction signal is calculated from a set of several different values of the control signal that minimizes the derived signal. The parameter adjustment signal is calculated by a neural network and fuzzy logic processor from the error signal and the correction signal. The correction signal is periodically calculated by a Quantum Genetic Search Algorithm that results from a merging of a genetic algorithm and a quantum search algorithm.

", "id": "sg:patent.US-7383235-B1", "keywords": [ "method", "hardware architecture", "processing data", "soft computing", "control signal", "output", "error signal", "state", "reference", "parameter", "signal", "quantity", "processing", "correction", "different value", "minimizes", "Nerve Net", "fuzzy logic", "quantum", "search algorithm", "genetic algorithm" ], "name": "Method and hardware architecture for controlling a process or for processing data based on quantum soft computing", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.5403.2", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7383235-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03596.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7383235-B1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7383235-B1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7383235-B1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7383235-B1'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      15 PREDICATES      36 URIs      29 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7383235-B1 schema:about anzsrc-for:2746
2 schema:author N35ef6065de4340e1ab71db6dde470d74
3 schema:citation sg:pub.10.1038/30687
4 schema:datePublished 2008-06-03T00:00
5 schema:description <p num="p-0001">A method of controlling a process driven by a control signal for producing a corresponding output includes producing an error signal as a function of a state of the process and of a reference signal. A control signal is generated as a function of the error signal and of a parameter adjustment signal. The control signal is applied to the process. A derived signal representative of a quantity to be minimized is calculated by processing paired values of the state of the process and the control signal. A correction signal is calculated from a set of several different values of the control signal that minimizes the derived signal. The parameter adjustment signal is calculated by a neural network and fuzzy logic processor from the error signal and the correction signal. The correction signal is periodically calculated by a Quantum Genetic Search Algorithm that results from a merging of a genetic algorithm and a quantum search algorithm.</p>
6 schema:keywords Nerve Net
7 control signal
8 correction
9 different value
10 error signal
11 fuzzy logic
12 genetic algorithm
13 hardware architecture
14 method
15 minimizes
16 output
17 parameter
18 processing
19 processing data
20 quantity
21 quantum
22 reference
23 search algorithm
24 signal
25 soft computing
26 state
27 schema:name Method and hardware architecture for controlling a process or for processing data based on quantum soft computing
28 schema:recipient https://www.grid.ac/institutes/grid.5403.2
29 schema:sameAs https://app.dimensions.ai/details/patent/US-7383235-B1
30 schema:sdDatePublished 2019-04-18T10:31
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N638b668f32c3435d8c2be634f4c7d0d4
33 sgo:license sg:explorer/license/
34 sgo:sdDataset patents
35 rdf:type sgo:Patent
36 N080d0ae8dd1a4228b44761383448872d schema:name Serguei Panfilov
37 rdf:type schema:Person
38 N0bb3b95bb44041148068ce2e19bff58f rdf:first Ndf8e3b47871a4d1b9717877dd919ef0e
39 rdf:rest N583b4824da5340d3ab7c2e8522a5ad87
40 N13257aa064fc418e8ae4b357d9a8e450 rdf:first N950ce61e5231424695da9f0e71e7861c
41 rdf:rest Nabea21966eb2412eb0d81f4906f4cf38
42 N1c68ca9cf5c04ffea33ea0bfc39c09ad rdf:first N080d0ae8dd1a4228b44761383448872d
43 rdf:rest N13257aa064fc418e8ae4b357d9a8e450
44 N35ef6065de4340e1ab71db6dde470d74 rdf:first Nb23731e6ed27416fa1a7299e69da9064
45 rdf:rest N0bb3b95bb44041148068ce2e19bff58f
46 N583b4824da5340d3ab7c2e8522a5ad87 rdf:first N8410133ee2194a6fbc89e52dd07bf907
47 rdf:rest N1c68ca9cf5c04ffea33ea0bfc39c09ad
48 N638b668f32c3435d8c2be634f4c7d0d4 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N72bff1975fdc438a9fb190cc62ec9d37 schema:name Massimo Porto
51 rdf:type schema:Person
52 N8410133ee2194a6fbc89e52dd07bf907 schema:name Ichiro Kurawaki
53 rdf:type schema:Person
54 N8745cf6635714ef797ea01f288dcc505 rdf:first N72bff1975fdc438a9fb190cc62ec9d37
55 rdf:rest rdf:nil
56 N950ce61e5231424695da9f0e71e7861c schema:name Fabio Ghisi
57 rdf:type schema:Person
58 Nabea21966eb2412eb0d81f4906f4cf38 rdf:first Nfb8638f8bcf94923b74f1eacdf6ddd57
59 rdf:rest N8745cf6635714ef797ea01f288dcc505
60 Nb23731e6ed27416fa1a7299e69da9064 schema:name Serguei Ulyanov
61 rdf:type schema:Person
62 Ndf8e3b47871a4d1b9717877dd919ef0e schema:name Gianguido Rizzotto
63 rdf:type schema:Person
64 Nfb8638f8bcf94923b74f1eacdf6ddd57 schema:name Paolo Amato
65 rdf:type schema:Person
66 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
67 rdf:type schema:DefinedTerm
68 sg:pub.10.1038/30687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021296790
69 https://doi.org/10.1038/30687
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.5403.2 schema:Organization
 




Preview window. Press ESC to close (or click here)


...