Computer systems and methods for analyzing experiment design


Ontology type: sgo:Patent     


Patent Info

DATE

2007-09-11T00:00

AUTHORS

Andrey Bondarenko

ABSTRACT

An experiment definition system that digitally represents an experiment design. The experiment definition provides the logical structure for data analysis of scans from one or more biological experiments. The experiment definition either directly reflects the experiment design in a one-to-one relationship, or the user customizes the experiment definition. Experiment definitions are stored as a set of instructions in a database of experiment definitions. A user interface for constructing the experiment definition, and for customizing one or more automated analysis pipelines for processing the experiment definitions. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2790", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Andrey Bondarenko", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1058040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001517867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351081a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002278618", 
          "https://doi.org/10.1038/351081a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004656138", 
          "https://doi.org/10.1038/nrg863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004656138", 
          "https://doi.org/10.1038/nrg863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1995.1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009877254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1296-457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010987019", 
          "https://doi.org/10.1038/ng1296-457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/9.4.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011783359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.25.14440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015989129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/4462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017284394", 
          "https://doi.org/10.1038/4462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1180060603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017606687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cem.1180060603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017606687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-5663(96)83302-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018301713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.186501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020261175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(199612)12:15<1519::aid-yea47>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022863991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0061(199612)12:15<1519::aid-yea47>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022863991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6.7.639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028833356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(90)80128-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032317354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.00701.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033782612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.2.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035645729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.20.10614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046356338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/2.2.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048829539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050729014", 
          "https://doi.org/10.1038/nbt1296-1681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00291a025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054991077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-137-1-69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060367828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1973.223640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/106186002317375640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176324456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064406585"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09-11T00:00", 
    "description": "

An experiment definition system that digitally represents an experiment design. The experiment definition provides the logical structure for data analysis of scans from one or more biological experiments. The experiment definition either directly reflects the experiment design in a one-to-one relationship, or the user customizes the experiment definition. Experiment definitions are stored as a set of instructions in a database of experiment definitions. A user interface for constructing the experiment definition, and for customizing one or more automated analysis pipelines for processing the experiment definitions.

", "id": "sg:patent.US-7269517-B2", "keywords": [ "computer system", "method", "experiment design", "experiment", "logical structure", "Statistic as Topic", "biological experiment", "one-to-one", "customize", "Instructional Film and Video", "database", "user interface", "customizing", "automated analysis", "processing" ], "name": "Computer systems and methods for analyzing experiment design", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419815.0", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.417993.1", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7269517-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:29", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03192.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7269517-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7269517-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7269517-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7269517-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      15 PREDICATES      59 URIs      23 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7269517-B2 schema:about anzsrc-for:2790
2 schema:author Nd54a173af6b7417f9bdcd41bfdf6c985
3 schema:citation sg:pub.10.1038/35057062
4 sg:pub.10.1038/351081a0
5 sg:pub.10.1038/4462
6 sg:pub.10.1038/nbt1296-1675
7 sg:pub.10.1038/nbt1296-1681
8 sg:pub.10.1038/ng1296-457
9 sg:pub.10.1038/nrg863
10 https://doi.org/10.1002/(sici)1097-0061(199612)12:15<1519::aid-yea47>3.0.co;2-m
11 https://doi.org/10.1002/cem.1180060603
12 https://doi.org/10.1006/geno.1995.1233
13 https://doi.org/10.1016/0169-7439(90)80128-s
14 https://doi.org/10.1016/0956-5663(96)83302-1
15 https://doi.org/10.1021/ac00291a025
16 https://doi.org/10.1073/pnas.93.2.659
17 https://doi.org/10.1073/pnas.93.20.10614
18 https://doi.org/10.1073/pnas.93.25.14440
19 https://doi.org/10.1093/biostatistics/2.2.183
20 https://doi.org/10.1093/comjnl/9.4.373
21 https://doi.org/10.1099/00221287-137-1-69
22 https://doi.org/10.1101/gr.186501
23 https://doi.org/10.1101/gr.6.7.639
24 https://doi.org/10.1109/t-c.1973.223640
25 https://doi.org/10.1111/j.0006-341x.2002.00701.x
26 https://doi.org/10.1126/science.1058040
27 https://doi.org/10.1126/science.270.5235.467
28 https://doi.org/10.1126/science.270.5235.484
29 https://doi.org/10.1126/science.286.5439.531
30 https://doi.org/10.1198/106186002317375640
31 https://doi.org/10.1214/aos/1176324456
32 schema:datePublished 2007-09-11T00:00
33 schema:description <p num="p-0001">An experiment definition system that digitally represents an experiment design. The experiment definition provides the logical structure for data analysis of scans from one or more biological experiments. The experiment definition either directly reflects the experiment design in a one-to-one relationship, or the user customizes the experiment definition. Experiment definitions are stored as a set of instructions in a database of experiment definitions. A user interface for constructing the experiment definition, and for customizing one or more automated analysis pipelines for processing the experiment definitions.</p>
34 schema:keywords Instructional Film and Video
35 Statistic as Topic
36 automated analysis
37 biological experiment
38 computer system
39 customize
40 customizing
41 database
42 experiment
43 experiment design
44 logical structure
45 method
46 one-to-one
47 processing
48 user interface
49 schema:name Computer systems and methods for analyzing experiment design
50 schema:recipient https://www.grid.ac/institutes/grid.417993.1
51 https://www.grid.ac/institutes/grid.419815.0
52 schema:sameAs https://app.dimensions.ai/details/patent/US-7269517-B2
53 schema:sdDatePublished 2019-04-18T10:29
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nc20b79914b5b48edb3bcca7cc8803203
56 sgo:license sg:explorer/license/
57 sgo:sdDataset patents
58 rdf:type sgo:Patent
59 N75d2d54530e14b3daeaab0790fb7165f schema:name Andrey Bondarenko
60 rdf:type schema:Person
61 Nc20b79914b5b48edb3bcca7cc8803203 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nd54a173af6b7417f9bdcd41bfdf6c985 rdf:first N75d2d54530e14b3daeaab0790fb7165f
64 rdf:rest rdf:nil
65 anzsrc-for:2790 schema:inDefinedTermSet anzsrc-for:
66 rdf:type schema:DefinedTerm
67 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
68 https://doi.org/10.1038/35057062
69 rdf:type schema:CreativeWork
70 sg:pub.10.1038/351081a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002278618
71 https://doi.org/10.1038/351081a0
72 rdf:type schema:CreativeWork
73 sg:pub.10.1038/4462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017284394
74 https://doi.org/10.1038/4462
75 rdf:type schema:CreativeWork
76 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
77 https://doi.org/10.1038/nbt1296-1675
78 rdf:type schema:CreativeWork
79 sg:pub.10.1038/nbt1296-1681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050729014
80 https://doi.org/10.1038/nbt1296-1681
81 rdf:type schema:CreativeWork
82 sg:pub.10.1038/ng1296-457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010987019
83 https://doi.org/10.1038/ng1296-457
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/nrg863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004656138
86 https://doi.org/10.1038/nrg863
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/(sici)1097-0061(199612)12:15<1519::aid-yea47>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1022863991
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/cem.1180060603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017606687
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1006/geno.1995.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009877254
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0169-7439(90)80128-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1032317354
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0956-5663(96)83302-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018301713
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1021/ac00291a025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054991077
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1073/pnas.93.2.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035645729
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1073/pnas.93.20.10614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046356338
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1073/pnas.93.25.14440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015989129
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1093/biostatistics/2.2.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048829539
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1093/comjnl/9.4.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011783359
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1099/00221287-137-1-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060367828
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1101/gr.186501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020261175
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1101/gr.6.7.639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028833356
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/t-c.1973.223640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455742
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1111/j.0006-341x.2002.00701.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033782612
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1126/science.1058040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001517867
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1198/106186002317375640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199301
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1214/aos/1176324456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406585
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.417993.1 schema:Organization
133 https://www.grid.ac/institutes/grid.419815.0 schema:Organization
 




Preview window. Press ESC to close (or click here)


...