Adiabatic quantum computation with superconducting qubits


Ontology type: sgo:Patent     


Patent Info

DATE

2006-11-14T00:00

AUTHORS

Mohammad H. S. Amin , Miles F. H. Steininger

ABSTRACT

A method for computing using a quantum system comprising a plurality of superconducting qubits is provided. Quantum system can be in any one of at least two configurations including (i) an initialization Hamiltonian H0 and (ii) a problem Hamiltonian HP. The plurality of superconducting qubits are arranged with respect to one another, with a predetermined number of couplings between respective pairs of superconducting qubits in the plurality of qubits, such that the plurality of superconducting qubits, coupled by the predetermined number of couplings, collectively define a computational problem to be solved. In the method, quantum system is initialized to the initialization Hamiltonian HO. Quantum system is then adiabatically changed until it is described by the ground state of the problem Hamiltonian HP. The quantum state of quantum system is then readout thereby solving the computational problem to be solved. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2415", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Mohammad H. S. Amin", 
        "type": "Person"
      }, 
      {
        "name": "Miles F. H. Steininger", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002136634", 
          "https://doi.org/10.1038/nature02851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002136634", 
          "https://doi.org/10.1038/nature02851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005853731", 
          "https://doi.org/10.1038/35017505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005853731", 
          "https://doi.org/10.1038/35017505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35023253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005858903", 
          "https://doi.org/10.1038/35023253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35023253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005858903", 
          "https://doi.org/10.1038/35023253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008830866", 
          "https://doi.org/10.1038/nature01365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008830866", 
          "https://doi.org/10.1038/nature01365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2003-10200-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010950244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5367.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017843919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5430.1036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020187346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/227683.227684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029386483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033024224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033024224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.5355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034364415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.5355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034364415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1424477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057705252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/13/8/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/15/10/028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.53.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.53.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.133816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061108849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.146331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/22.310584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061123777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/77.622206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061225168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1057726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444360"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-11-14T00:00", 
    "description": "

A method for computing using a quantum system comprising a plurality of superconducting qubits is provided. Quantum system can be in any one of at least two configurations including (i) an initialization Hamiltonian H0 and (ii) a problem Hamiltonian HP. The plurality of superconducting qubits are arranged with respect to one another, with a predetermined number of couplings between respective pairs of superconducting qubits in the plurality of qubits, such that the plurality of superconducting qubits, coupled by the predetermined number of couplings, collectively define a computational problem to be solved. In the method, quantum system is initialized to the initialization Hamiltonian HO. Quantum system is then adiabatically changed until it is described by the ground state of the problem Hamiltonian HP. The quantum state of quantum system is then readout thereby solving the computational problem to be solved.

", "id": "sg:patent.US-7135701-B2", "keywords": [ "adiabatic quantum computation", "superconducting qubits", "method", "quantum system", "plurality", "configuration", "initialization", "Hamiltonian", "respect", "coupling", "pair", "qubits", "computational problem", "ground state", "quantum state", "readout" ], "name": "Adiabatic quantum computation with superconducting qubits", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.421761.7", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7135701-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:29", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03179.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7135701-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7135701-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7135701-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7135701-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      15 PREDICATES      50 URIs      24 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7135701-B2 schema:about anzsrc-for:2415
2 schema:author Nf68787d5726649c2b6b8d567bb8a5b44
3 schema:citation sg:pub.10.1038/19718
4 sg:pub.10.1038/35017505
5 sg:pub.10.1038/35023253
6 sg:pub.10.1038/nature01365
7 sg:pub.10.1038/nature02851
8 https://doi.org/10.1063/1.1424477
9 https://doi.org/10.1088/0305-4470/13/8/005
10 https://doi.org/10.1088/0305-4470/15/10/028
11 https://doi.org/10.1103/physreve.58.5355
12 https://doi.org/10.1103/revmodphys.53.385
13 https://doi.org/10.1103/revmodphys.73.357
14 https://doi.org/10.1109/20.133816
15 https://doi.org/10.1109/22.146331
16 https://doi.org/10.1109/22.310584
17 https://doi.org/10.1109/77.622206
18 https://doi.org/10.1126/science.1057726
19 https://doi.org/10.1126/science.280.5367.1238
20 https://doi.org/10.1126/science.285.5430.1036
21 https://doi.org/10.1145/227683.227684
22 https://doi.org/10.1209/epl/i2003-10200-6
23 schema:datePublished 2006-11-14T00:00
24 schema:description <p num="p-0001">A method for computing using a quantum system comprising a plurality of superconducting qubits is provided. Quantum system can be in any one of at least two configurations including (i) an initialization Hamiltonian H<sub>0 </sub>and (ii) a problem Hamiltonian H<sub>P</sub>. The plurality of superconducting qubits are arranged with respect to one another, with a predetermined number of couplings between respective pairs of superconducting qubits in the plurality of qubits, such that the plurality of superconducting qubits, coupled by the predetermined number of couplings, collectively define a computational problem to be solved. In the method, quantum system is initialized to the initialization Hamiltonian H<sub>O</sub>. Quantum system is then adiabatically changed until it is described by the ground state of the problem Hamiltonian H<sub>P</sub>. The quantum state of quantum system is then readout thereby solving the computational problem to be solved.</p>
25 schema:keywords Hamiltonian
26 adiabatic quantum computation
27 computational problem
28 configuration
29 coupling
30 ground state
31 initialization
32 method
33 pair
34 plurality
35 quantum state
36 quantum system
37 qubits
38 readout
39 respect
40 superconducting qubits
41 schema:name Adiabatic quantum computation with superconducting qubits
42 schema:recipient https://www.grid.ac/institutes/grid.421761.7
43 schema:sameAs https://app.dimensions.ai/details/patent/US-7135701-B2
44 schema:sdDatePublished 2019-04-18T10:29
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N2df2d322c2434d488e37b48f4b7842f1
47 sgo:license sg:explorer/license/
48 sgo:sdDataset patents
49 rdf:type sgo:Patent
50 N123cc48b3a68440694f47a091df686da rdf:first Nc1af98367b864e459435e55c7f2feff9
51 rdf:rest rdf:nil
52 N2d4258a144a04694ba54bdd3a59f7679 schema:name Mohammad H. S. Amin
53 rdf:type schema:Person
54 N2df2d322c2434d488e37b48f4b7842f1 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nc1af98367b864e459435e55c7f2feff9 schema:name Miles F. H. Steininger
57 rdf:type schema:Person
58 Nf68787d5726649c2b6b8d567bb8a5b44 rdf:first N2d4258a144a04694ba54bdd3a59f7679
59 rdf:rest N123cc48b3a68440694f47a091df686da
60 anzsrc-for:2415 schema:inDefinedTermSet anzsrc-for:
61 rdf:type schema:DefinedTerm
62 sg:pub.10.1038/19718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792474
63 https://doi.org/10.1038/19718
64 rdf:type schema:CreativeWork
65 sg:pub.10.1038/35017505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005853731
66 https://doi.org/10.1038/35017505
67 rdf:type schema:CreativeWork
68 sg:pub.10.1038/35023253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005858903
69 https://doi.org/10.1038/35023253
70 rdf:type schema:CreativeWork
71 sg:pub.10.1038/nature01365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008830866
72 https://doi.org/10.1038/nature01365
73 rdf:type schema:CreativeWork
74 sg:pub.10.1038/nature02851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002136634
75 https://doi.org/10.1038/nature02851
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1063/1.1424477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057705252
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1088/0305-4470/13/8/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065362
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1088/0305-4470/15/10/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065892
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physreve.58.5355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034364415
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/revmodphys.53.385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838979
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/revmodphys.73.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033024224
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/20.133816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061108849
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/22.146331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122773
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/22.310584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061123777
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/77.622206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061225168
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1126/science.1057726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444360
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1126/science.280.5367.1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017843919
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1126/science.285.5430.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020187346
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1145/227683.227684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029386483
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1209/epl/i2003-10200-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010950244
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.421761.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...