Method, system, and apparatus for casual discovery and variable selection for classification


Ontology type: sgo:Patent     


Patent Info

DATE

2006-10-03T00:00

AUTHORS

Constantin F. Aliferis , Ioannis Tsamardinos

ABSTRACT

A method of determining a local causal neighborhood of a target variable from a data set can include identifying variables of the data set as candidates of the local causal neighborhood using statistical characteristics, and including the identified variables within a candidate set. False positive variables can be removed from the candidate set according to further statistical characteristics applied to each variable of the candidate set. The remaining variables of the candidate set can be identified as the local causal neighborhood of the target variable. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2358", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Constantin F. Aliferis", 
        "type": "Person"
      }, 
      {
        "name": "Ioannis Tsamardinos", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/507515.507523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012215835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046316965", 
          "https://doi.org/10.1007/bf00994110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2002-20541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057413213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.585893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171983"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10-03T00:00", 
    "description": "

A method of determining a local causal neighborhood of a target variable from a data set can include identifying variables of the data set as candidates of the local causal neighborhood using statistical characteristics, and including the identified variables within a candidate set. False positive variables can be removed from the candidate set according to further statistical characteristics applied to each variable of the candidate set. The remaining variables of the candidate set can be identified as the local causal neighborhood of the target variable.

", "id": "sg:patent.US-7117185-B1", "keywords": [ "method", "apparatus", "discovery", "variable selection", "classification", "target", "Dataset", "variable", "statistical characteristic", "false positive" ], "name": "Method, system, and apparatus for casual discovery and variable selection for classification", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.152326.1", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7117185-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:29", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03177.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7117185-B1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7117185-B1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7117185-B1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7117185-B1'


 

This table displays all metadata directly associated to this object as RDF triples.

49 TRIPLES      15 PREDICATES      28 URIs      18 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7117185-B1 schema:about anzsrc-for:2358
2 schema:author N641f438b2587493f992af04e80a95523
3 schema:citation sg:pub.10.1007/bf00994110
4 https://doi.org/10.1055/s-2002-20541
5 https://doi.org/10.1109/4235.585893
6 https://doi.org/10.1145/507515.507523
7 schema:datePublished 2006-10-03T00:00
8 schema:description <p num="p-0001">A method of determining a local causal neighborhood of a target variable from a data set can include identifying variables of the data set as candidates of the local causal neighborhood using statistical characteristics, and including the identified variables within a candidate set. False positive variables can be removed from the candidate set according to further statistical characteristics applied to each variable of the candidate set. The remaining variables of the candidate set can be identified as the local causal neighborhood of the target variable.</p>
9 schema:keywords Dataset
10 apparatus
11 classification
12 discovery
13 false positive
14 method
15 statistical characteristic
16 target
17 variable
18 variable selection
19 schema:name Method, system, and apparatus for casual discovery and variable selection for classification
20 schema:recipient https://www.grid.ac/institutes/grid.152326.1
21 schema:sameAs https://app.dimensions.ai/details/patent/US-7117185-B1
22 schema:sdDatePublished 2019-04-18T10:29
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N774b87241b6449999b9226ab4ebf922d
25 sgo:license sg:explorer/license/
26 sgo:sdDataset patents
27 rdf:type sgo:Patent
28 N4d713677cce943118aebb6ec8427e8d0 rdf:first Nd31f5567b47d430697d1d3975190c486
29 rdf:rest rdf:nil
30 N641f438b2587493f992af04e80a95523 rdf:first N7ef6e045ba8b497bb300a56e7234c37e
31 rdf:rest N4d713677cce943118aebb6ec8427e8d0
32 N774b87241b6449999b9226ab4ebf922d schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N7ef6e045ba8b497bb300a56e7234c37e schema:name Constantin F. Aliferis
35 rdf:type schema:Person
36 Nd31f5567b47d430697d1d3975190c486 schema:name Ioannis Tsamardinos
37 rdf:type schema:Person
38 anzsrc-for:2358 schema:inDefinedTermSet anzsrc-for:
39 rdf:type schema:DefinedTerm
40 sg:pub.10.1007/bf00994110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046316965
41 https://doi.org/10.1007/bf00994110
42 rdf:type schema:CreativeWork
43 https://doi.org/10.1055/s-2002-20541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057413213
44 rdf:type schema:CreativeWork
45 https://doi.org/10.1109/4235.585893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171983
46 rdf:type schema:CreativeWork
47 https://doi.org/10.1145/507515.507523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012215835
48 rdf:type schema:CreativeWork
49 https://www.grid.ac/institutes/grid.152326.1 schema:Organization
 




Preview window. Press ESC to close (or click here)


...