Efficient quantum computing operations


Ontology type: sgo:Patent     


Patent Info

DATE

2006-09-26T00:00

AUTHORS

Richard Cleve , John Watrous

ABSTRACT

A method of performing a quantum Fourier transform in a quantum computing circuit is disclosed. The method includes forming a quantum computing circuit as a collection of two-qubit gates operating on a sequence of input qubits. Auxiliary qubits are then interacted with the original input qubits to place the auxiliary qubits in a state corresponding to an output of a discrete Fourier transform of a classical state of the input qubits. The original input qubits are then re-set to their ground state by physically interacting the input qubits with the auxiliary qubits. The auxiliary qubits are then transformed to a state representative of a quantum Fourier transform of the sequence of input qubits. More... »

Related SciGraph Publications

  • 1999-12. Towards practical quantum cryptography in APPLIED PHYSICS B
  • 1992-10. Quantum Cryptography in SCIENTIFIC AMERICAN
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2389", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Richard Cleve", 
            "type": "Person"
          }, 
          {
            "name": "John Watrous", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0375-9601(97)00176-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001689889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.2818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.2818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.2818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.54.3824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022782738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.54.3824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022782738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.57.737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026607465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.57.737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026607465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029995798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.2525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029995798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.1502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033391185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.1502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033391185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039061342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039061342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003400050824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043541651", 
              "https://doi.org/10.1007/s003400050824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048714555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048714555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048714555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.59.4238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052085805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.59.4238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052085805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican1092-50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056616219", 
              "https://doi.org/10.1038/scientificamerican1092-50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/el:19930862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056779473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/2058-7058/11/3/30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059184575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.42.4102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060482167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.42.4102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060482167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.55.900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060492792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.55.900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060492792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.256484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061098983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/18.748999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061100875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/68.681313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061210783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.279.5349.342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062559315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.283.5410.2050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062564639"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-09-26T00:00", 
        "description": "

    A method of performing a quantum Fourier transform in a quantum computing circuit is disclosed. The method includes forming a quantum computing circuit as a collection of two-qubit gates operating on a sequence of input qubits. Auxiliary qubits are then interacted with the original input qubits to place the auxiliary qubits in a state corresponding to an output of a discrete Fourier transform of a classical state of the input qubits. The original input qubits are then re-set to their ground state by physically interacting the input qubits with the auxiliary qubits. The auxiliary qubits are then transformed to a state representative of a quantum Fourier transform of the sequence of input qubits.

    ", "id": "sg:patent.US-7113967-B2", "keywords": [ "quantum", "operation", "method", "circuit", "collection", "qubits", "sequence", "input", "state", "output", "discrete Fourier", "ground state" ], "name": "Efficient quantum computing operations", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.455807.b", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7113967-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:29", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03178.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7113967-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7113967-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7113967-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7113967-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      15 PREDICATES      48 URIs      20 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-7113967-B2 schema:about anzsrc-for:2389
    2 schema:author Nbeb067398d934d3bbadcabd33a7c2a7a
    3 schema:citation sg:pub.10.1007/s003400050824
    4 sg:pub.10.1038/scientificamerican1092-50
    5 https://doi.org/10.1016/s0375-9601(97)00176-x
    6 https://doi.org/10.1049/el:19930862
    7 https://doi.org/10.1088/2058-7058/11/3/30
    8 https://doi.org/10.1103/physreva.42.4102
    9 https://doi.org/10.1103/physreva.54.3824
    10 https://doi.org/10.1103/physreva.55.900
    11 https://doi.org/10.1103/physreva.57.737
    12 https://doi.org/10.1103/physreva.59.4238
    13 https://doi.org/10.1103/physrevlett.70.1895
    14 https://doi.org/10.1103/physrevlett.74.4087
    15 https://doi.org/10.1103/physrevlett.76.722
    16 https://doi.org/10.1103/physrevlett.77.2818
    17 https://doi.org/10.1103/physrevlett.84.2525
    18 https://doi.org/10.1103/physrevlett.85.441
    19 https://doi.org/10.1103/physrevlett.86.1502
    20 https://doi.org/10.1109/18.256484
    21 https://doi.org/10.1109/18.748999
    22 https://doi.org/10.1109/68.681313
    23 https://doi.org/10.1126/science.279.5349.342
    24 https://doi.org/10.1126/science.283.5410.2050
    25 schema:datePublished 2006-09-26T00:00
    26 schema:description <p num="p-0001">A method of performing a quantum Fourier transform in a quantum computing circuit is disclosed. The method includes forming a quantum computing circuit as a collection of two-qubit gates operating on a sequence of input qubits. Auxiliary qubits are then interacted with the original input qubits to place the auxiliary qubits in a state corresponding to an output of a discrete Fourier transform of a classical state of the input qubits. The original input qubits are then re-set to their ground state by physically interacting the input qubits with the auxiliary qubits. The auxiliary qubits are then transformed to a state representative of a quantum Fourier transform of the sequence of input qubits.</p>
    27 schema:keywords circuit
    28 collection
    29 discrete Fourier
    30 ground state
    31 input
    32 method
    33 operation
    34 output
    35 quantum
    36 qubits
    37 sequence
    38 state
    39 schema:name Efficient quantum computing operations
    40 schema:recipient https://www.grid.ac/institutes/grid.455807.b
    41 schema:sameAs https://app.dimensions.ai/details/patent/US-7113967-B2
    42 schema:sdDatePublished 2019-04-18T10:29
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nf6159c25fa004b4f9f8a4d22229d39a9
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset patents
    47 rdf:type sgo:Patent
    48 N326d140fe3304c9fb1f3f2620b2818e3 schema:name John Watrous
    49 rdf:type schema:Person
    50 N547afb03fdfb4b66964a7aad76c0368d rdf:first N326d140fe3304c9fb1f3f2620b2818e3
    51 rdf:rest rdf:nil
    52 N67a33bf61afe41aab97b50e92032e0bb schema:name Richard Cleve
    53 rdf:type schema:Person
    54 Nbeb067398d934d3bbadcabd33a7c2a7a rdf:first N67a33bf61afe41aab97b50e92032e0bb
    55 rdf:rest N547afb03fdfb4b66964a7aad76c0368d
    56 Nf6159c25fa004b4f9f8a4d22229d39a9 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 anzsrc-for:2389 schema:inDefinedTermSet anzsrc-for:
    59 rdf:type schema:DefinedTerm
    60 sg:pub.10.1007/s003400050824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043541651
    61 https://doi.org/10.1007/s003400050824
    62 rdf:type schema:CreativeWork
    63 sg:pub.10.1038/scientificamerican1092-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056616219
    64 https://doi.org/10.1038/scientificamerican1092-50
    65 rdf:type schema:CreativeWork
    66 https://doi.org/10.1016/s0375-9601(97)00176-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001689889
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1049/el:19930862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056779473
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1088/2058-7058/11/3/30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059184575
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1103/physreva.42.4102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060482167
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1103/physreva.54.3824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782738
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1103/physreva.55.900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492792
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1103/physreva.57.737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026607465
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1103/physreva.59.4238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052085805
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physrevlett.70.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013951720
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1103/physrevlett.74.4087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811054
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physrevlett.76.722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048714555
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1103/physrevlett.77.2818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017504732
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1103/physrevlett.84.2525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029995798
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1103/physrevlett.85.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039061342
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1103/physrevlett.86.1502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033391185
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1109/18.256484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098983
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1109/18.748999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100875
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1109/68.681313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061210783
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1126/science.279.5349.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559315
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1126/science.283.5410.2050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564639
    105 rdf:type schema:CreativeWork
    106 https://www.grid.ac/institutes/grid.455807.b schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...