Pattern recognition utilizing a nanotechnology-based neural network


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Alex Nugent

ABSTRACT

A pattern recognition system, comprising a neural network formed utilizing nanotechnology and a pattern input unit, which communicates with the neural network, wherein the neural network processes data input via the pattern input unit in order to recognize data patterns thereof. Such a pattern recognition system can be implemented in the context of a speech recognition system and/or other pattern recognition systems, such as visual and/or imaging recognition systems. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Alex Nugent", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35023115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000730567", 
          "https://doi.org/10.1038/35023115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/13/1/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006229098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972026r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016636426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017715008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0351-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018196870", 
          "https://doi.org/10.1007/s00422-002-0351-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0351-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018196870", 
          "https://doi.org/10.1007/s00422-002-0351-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018868771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(98)00506-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037841902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037943488", 
          "https://doi.org/10.1038/nature00854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5367.1253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043682209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/13/1/301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045550569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican1200-62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046624726", 
          "https://doi.org/10.1038/scientificamerican1200-62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1063821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046634290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0024439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055717152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0102365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056045534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025941j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034240z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0342500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034412s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057690911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.127078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057691170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.127079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057691171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1290272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057692374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1373413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1377627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1396632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.7621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/28.658723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061143057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2002.804744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.2002.88.1.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075078988"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A pattern recognition system, comprising a neural network formed utilizing nanotechnology and a pattern input unit, which communicates with the neural network, wherein the neural network processes data input via the pattern input unit in order to recognize data patterns thereof. Such a pattern recognition system can be implemented in the context of a speech recognition system and/or other pattern recognition systems, such as visual and/or imaging recognition systems.

", "id": "sg:patent.US-7107252-B2", "keywords": [ "pattern recognition", "Neural Network", "Automated Pattern Recognition", "Nerve Net", "nanotechnology", "pattern", "wherein", "data pattern", "speech recognition system", "recognition system" ], "name": "Pattern recognition utilizing a nanotechnology-based neural network", "sameAs": [ "https://app.dimensions.ai/details/patent/US-7107252-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:32", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_2d2c25e7.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7107252-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7107252-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7107252-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7107252-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      13 PREDICATES      53 URIs      17 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7107252-B2 schema:about anzsrc-for:2746
2 schema:author N655e9d4a82ab4e589aabf7d4e5b80315
3 schema:citation sg:pub.10.1007/s00422-002-0351-0
4 sg:pub.10.1038/35023115
5 sg:pub.10.1038/nature00854
6 sg:pub.10.1038/scientificamerican1200-62
7 https://doi.org/10.1016/s0169-4332(98)00506-6
8 https://doi.org/10.1021/ja0024439
9 https://doi.org/10.1021/jp0102365
10 https://doi.org/10.1021/jp972026r
11 https://doi.org/10.1021/nl025941j
12 https://doi.org/10.1021/nl034240z
13 https://doi.org/10.1021/nl0342500
14 https://doi.org/10.1021/nl034412s
15 https://doi.org/10.1063/1.123941
16 https://doi.org/10.1063/1.126811
17 https://doi.org/10.1063/1.127078
18 https://doi.org/10.1063/1.127079
19 https://doi.org/10.1063/1.1290272
20 https://doi.org/10.1063/1.1373413
21 https://doi.org/10.1063/1.1377627
22 https://doi.org/10.1063/1.1396632
23 https://doi.org/10.1088/0957-4484/13/1/301
24 https://doi.org/10.1088/0957-4484/13/1/308
25 https://doi.org/10.1103/physrevb.32.7621
26 https://doi.org/10.1103/physrevb.37.302
27 https://doi.org/10.1103/physreve.59.6896
28 https://doi.org/10.1109/28.658723
29 https://doi.org/10.1109/tnano.2002.804744
30 https://doi.org/10.1126/science.1058782
31 https://doi.org/10.1126/science.1063821
32 https://doi.org/10.1126/science.280.5367.1253
33 https://doi.org/10.1152/jn.2002.88.1.507
34 schema:description <p num="p-0001">A pattern recognition system, comprising a neural network formed utilizing nanotechnology and a pattern input unit, which communicates with the neural network, wherein the neural network processes data input via the pattern input unit in order to recognize data patterns thereof. Such a pattern recognition system can be implemented in the context of a speech recognition system and/or other pattern recognition systems, such as visual and/or imaging recognition systems.</p>
35 schema:keywords Automated Pattern Recognition
36 Nerve Net
37 Neural Network
38 data pattern
39 nanotechnology
40 pattern
41 pattern recognition
42 recognition system
43 speech recognition system
44 wherein
45 schema:name Pattern recognition utilizing a nanotechnology-based neural network
46 schema:sameAs https://app.dimensions.ai/details/patent/US-7107252-B2
47 schema:sdDatePublished 2019-03-07T15:32
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ndf726c03e832443794f65e71cf1f3701
50 sgo:license sg:explorer/license/
51 sgo:sdDataset patents
52 rdf:type sgo:Patent
53 N655e9d4a82ab4e589aabf7d4e5b80315 rdf:first N87746b4da6ac4f2291c291f8368bcd69
54 rdf:rest rdf:nil
55 N87746b4da6ac4f2291c291f8368bcd69 schema:name Alex Nugent
56 rdf:type schema:Person
57 Ndf726c03e832443794f65e71cf1f3701 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
60 rdf:type schema:DefinedTerm
61 sg:pub.10.1007/s00422-002-0351-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018196870
62 https://doi.org/10.1007/s00422-002-0351-0
63 rdf:type schema:CreativeWork
64 sg:pub.10.1038/35023115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000730567
65 https://doi.org/10.1038/35023115
66 rdf:type schema:CreativeWork
67 sg:pub.10.1038/nature00854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037943488
68 https://doi.org/10.1038/nature00854
69 rdf:type schema:CreativeWork
70 sg:pub.10.1038/scientificamerican1200-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046624726
71 https://doi.org/10.1038/scientificamerican1200-62
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/s0169-4332(98)00506-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037841902
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1021/ja0024439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055717152
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1021/jp0102365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056045534
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1021/jp972026r schema:sameAs https://app.dimensions.ai/details/publication/pub.1016636426
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1021/nl025941j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215474
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1021/nl034240z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215583
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1021/nl0342500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215585
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1021/nl034412s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215625
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.123941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018868771
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.126811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690911
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.127078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691170
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.127079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691171
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.1290272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057692374
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.1373413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700218
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.1377627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700616
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.1396632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702537
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1088/0957-4484/13/1/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045550569
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0957-4484/13/1/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006229098
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.32.7621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538980
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.37.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545295
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physreve.59.6896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017715008
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/28.658723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061143057
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/tnano.2002.804744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711738
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1126/science.1058782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444451
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1126/science.1063821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634290
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1126/science.280.5367.1253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043682209
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1152/jn.2002.88.1.507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075078988
126 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...