Utilized nanotechnology apparatus using a neutral network, a solution and a connection gap


Ontology type: sgo:Patent     


Patent Info

DATE

2006-05-02T00:00

AUTHORS

Alex Nugent

ABSTRACT

An apparatus for maintaining components in neural network formed utilizing nanotechnology is described herein. A connection gap can be formed between two terminals. A solution comprising a melting point at approximately room temperature can be provided, wherein the solution is maintained in the connection gap and comprises a plurality of nanoparticles forming nanoconnections thereof having connection strengths thereof, wherein the solution and the connection gap are adapted for use with a neural network formed utilizing nanotechnology, such when power is removed from the neural network, the solution freezes, thereby locking into place the connection strengths. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3021", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Alex Nugent", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35023115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000730567", 
          "https://doi.org/10.1038/35023115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35023115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000730567", 
          "https://doi.org/10.1038/35023115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/13/1/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006229098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972026r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016636426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972026r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016636426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017715008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.59.6896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017715008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-002-0351-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018196870", 
          "https://doi.org/10.1007/s00422-002-0351-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018868771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(98)00506-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037841902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037943488", 
          "https://doi.org/10.1038/nature00854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037943488", 
          "https://doi.org/10.1038/nature00854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5367.1253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043682209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/13/1/301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045550569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican1200-62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046624726", 
          "https://doi.org/10.1038/scientificamerican1200-62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1063821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046634290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0024439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055717152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0024439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055717152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0102365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056045534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0102365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056045534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025941j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl025941j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034240z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034240z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0342500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0342500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034412s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl034412s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056215625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057690911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.127078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057691170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.127079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057691171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1290272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057692374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1373413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1377627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1396632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.7621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.7621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/28.658723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061143057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2002.804744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2002.804744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2002.804744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061711738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.2002.88.1.507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075078988"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-05-02T00:00", 
    "description": "

An apparatus for maintaining components in neural network formed utilizing nanotechnology is described herein. A connection gap can be formed between two terminals. A solution comprising a melting point at approximately room temperature can be provided, wherein the solution is maintained in the connection gap and comprises a plurality of nanoparticles forming nanoconnections thereof having connection strengths thereof, wherein the solution and the connection gap are adapted for use with a neural network formed utilizing nanotechnology, such when power is removed from the neural network, the solution freezes, thereby locking into place the connection strengths.

", "id": "sg:patent.US-7039619-B2", "keywords": [ "nanotechnology", "network", "solution", "connection", "apparatus", "component", "Nerve Net", "terminal", "room temperature", "wherein", "plurality", "nanoparticles", "connection strength", "power" ], "name": "Utilized nanotechnology apparatus using a neutral network, a solution and a connection gap", "sameAs": [ "https://app.dimensions.ai/details/patent/US-7039619-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:28", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03170.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7039619-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7039619-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7039619-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7039619-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      14 PREDICATES      58 URIs      22 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-7039619-B2 schema:about anzsrc-for:3021
2 schema:author N1108a50daa2b429885750db344176e93
3 schema:citation sg:pub.10.1007/s00422-002-0351-0
4 sg:pub.10.1038/35023115
5 sg:pub.10.1038/nature00854
6 sg:pub.10.1038/scientificamerican1200-62
7 https://doi.org/10.1016/s0169-4332(98)00506-6
8 https://doi.org/10.1021/ja0024439
9 https://doi.org/10.1021/jp0102365
10 https://doi.org/10.1021/jp972026r
11 https://doi.org/10.1021/nl025941j
12 https://doi.org/10.1021/nl034240z
13 https://doi.org/10.1021/nl0342500
14 https://doi.org/10.1021/nl034412s
15 https://doi.org/10.1063/1.123941
16 https://doi.org/10.1063/1.126811
17 https://doi.org/10.1063/1.127078
18 https://doi.org/10.1063/1.127079
19 https://doi.org/10.1063/1.1290272
20 https://doi.org/10.1063/1.1373413
21 https://doi.org/10.1063/1.1377627
22 https://doi.org/10.1063/1.1396632
23 https://doi.org/10.1088/0957-4484/13/1/301
24 https://doi.org/10.1088/0957-4484/13/1/308
25 https://doi.org/10.1103/physrevb.32.7621
26 https://doi.org/10.1103/physrevb.37.302
27 https://doi.org/10.1103/physreve.59.6896
28 https://doi.org/10.1109/28.658723
29 https://doi.org/10.1109/tnano.2002.804744
30 https://doi.org/10.1126/science.1058782
31 https://doi.org/10.1126/science.1063821
32 https://doi.org/10.1126/science.280.5367.1253
33 https://doi.org/10.1152/jn.2002.88.1.507
34 schema:datePublished 2006-05-02T00:00
35 schema:description <p num="p-0001">An apparatus for maintaining components in neural network formed utilizing nanotechnology is described herein. A connection gap can be formed between two terminals. A solution comprising a melting point at approximately room temperature can be provided, wherein the solution is maintained in the connection gap and comprises a plurality of nanoparticles forming nanoconnections thereof having connection strengths thereof, wherein the solution and the connection gap are adapted for use with a neural network formed utilizing nanotechnology, such when power is removed from the neural network, the solution freezes, thereby locking into place the connection strengths.</p>
36 schema:keywords Nerve Net
37 apparatus
38 component
39 connection
40 connection strength
41 nanoparticles
42 nanotechnology
43 network
44 plurality
45 power
46 room temperature
47 solution
48 terminal
49 wherein
50 schema:name Utilized nanotechnology apparatus using a neutral network, a solution and a connection gap
51 schema:sameAs https://app.dimensions.ai/details/patent/US-7039619-B2
52 schema:sdDatePublished 2019-04-18T10:28
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N13031c11913a45f183f148939c4529b4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset patents
57 rdf:type sgo:Patent
58 N1108a50daa2b429885750db344176e93 rdf:first N1c6f03b2e2e549929a03c41005291608
59 rdf:rest rdf:nil
60 N13031c11913a45f183f148939c4529b4 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N1c6f03b2e2e549929a03c41005291608 schema:name Alex Nugent
63 rdf:type schema:Person
64 anzsrc-for:3021 schema:inDefinedTermSet anzsrc-for:
65 rdf:type schema:DefinedTerm
66 sg:pub.10.1007/s00422-002-0351-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018196870
67 https://doi.org/10.1007/s00422-002-0351-0
68 rdf:type schema:CreativeWork
69 sg:pub.10.1038/35023115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000730567
70 https://doi.org/10.1038/35023115
71 rdf:type schema:CreativeWork
72 sg:pub.10.1038/nature00854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037943488
73 https://doi.org/10.1038/nature00854
74 rdf:type schema:CreativeWork
75 sg:pub.10.1038/scientificamerican1200-62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046624726
76 https://doi.org/10.1038/scientificamerican1200-62
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/s0169-4332(98)00506-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037841902
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1021/ja0024439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055717152
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1021/jp0102365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056045534
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1021/jp972026r schema:sameAs https://app.dimensions.ai/details/publication/pub.1016636426
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1021/nl025941j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215474
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1021/nl034240z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215583
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1021/nl0342500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215585
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1021/nl034412s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215625
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1063/1.123941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018868771
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1063/1.126811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690911
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.127078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691170
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.127079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057691171
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.1290272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057692374
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.1373413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700218
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.1377627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700616
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1063/1.1396632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702537
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0957-4484/13/1/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045550569
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0957-4484/13/1/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006229098
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.32.7621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538980
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.37.302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545295
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreve.59.6896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017715008
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/28.658723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061143057
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tnano.2002.804744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711738
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1126/science.1058782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444451
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1126/science.1063821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046634290
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1126/science.280.5367.1253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043682209
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1152/jn.2002.88.1.507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075078988
131 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...