Multivariate responses using classification and regression trees systems and methods


Ontology type: sgo:Patent     


Patent Info

DATE

2006-02-21T00:00

AUTHORS

Tim K. Keyes

ABSTRACT

The present invention is a method of allowing inclusion of more than one variable in a Classification and Regression Tree (CART) analysis. The method includes predicting y using p exploratory variables, where y is a multivariate, continuous response vector, describing a probability density function at “parent” and “child” nodes using a multivariate normal distribution, which is a function of y, and defining a split function where “child” node distributions are individualized, compared to the parent node. In one embodiment a system is configured to implement the multivariate CART analysis for predicting behavior in a non-performing loan portfolio. More... »

Related SciGraph Publications

  • 1996-08. Bagging predictors in MACHINE LEARNING
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3313", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Tim K. Keyes", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-02-21T00:00", 
        "description": "

    The present invention is a method of allowing inclusion of more than one variable in a Classification and Regression Tree (CART) analysis. The method includes predicting y using p exploratory variables, where y is a multivariate, continuous response vector, describing a probability density function at “parent” and “child” nodes using a multivariate normal distribution, which is a function of y, and defining a split function where “child” node distributions are individualized, compared to the parent node. In one embodiment a system is configured to implement the multivariate CART analysis for predicting behavior in a non-performing loan portfolio.

    ", "id": "sg:patent.US-7003490-B1", "keywords": [ "classification", "regression tree", "method", "invention", "inclusion", "Classification and Regression Tree", "exploratory", "vector", "probability density function", "parent", "child", "node", "normal distribution", "split", "distribution", "embodiment", "behavior", "portfolio" ], "name": "Multivariate responses using classification and regression trees systems and methods", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.418143.b", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-7003490-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:28", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03166.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7003490-B1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7003490-B1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7003490-B1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7003490-B1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    44 TRIPLES      15 PREDICATES      33 URIs      26 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-7003490-B1 schema:about anzsrc-for:3313
    2 schema:author N7e640bce39f44b2fa5b5b42497994679
    3 schema:citation sg:pub.10.1007/bf00058655
    4 schema:datePublished 2006-02-21T00:00
    5 schema:description <p num="p-0001">The present invention is a method of allowing inclusion of more than one variable in a Classification and Regression Tree (CART) analysis. The method includes predicting y using p exploratory variables, where y is a multivariate, continuous response vector, describing a probability density function at &#8220;parent&#8221; and &#8220;child&#8221; nodes using a multivariate normal distribution, which is a function of y, and defining a split function where &#8220;child&#8221; node distributions are individualized, compared to the parent node. In one embodiment a system is configured to implement the multivariate CART analysis for predicting behavior in a non-performing loan portfolio.</p>
    6 schema:keywords Classification and Regression Tree
    7 behavior
    8 child
    9 classification
    10 distribution
    11 embodiment
    12 exploratory
    13 inclusion
    14 invention
    15 method
    16 node
    17 normal distribution
    18 parent
    19 portfolio
    20 probability density function
    21 regression tree
    22 split
    23 vector
    24 schema:name Multivariate responses using classification and regression trees systems and methods
    25 schema:recipient https://www.grid.ac/institutes/grid.418143.b
    26 schema:sameAs https://app.dimensions.ai/details/patent/US-7003490-B1
    27 schema:sdDatePublished 2019-04-18T10:28
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher Nb4c2d37c942d47dc91d098afe5551588
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset patents
    32 rdf:type sgo:Patent
    33 N7e640bce39f44b2fa5b5b42497994679 rdf:first Nff5bdb09ec454d0bbadff665fbf08b73
    34 rdf:rest rdf:nil
    35 Nb4c2d37c942d47dc91d098afe5551588 schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 Nff5bdb09ec454d0bbadff665fbf08b73 schema:name Tim K. Keyes
    38 rdf:type schema:Person
    39 anzsrc-for:3313 schema:inDefinedTermSet anzsrc-for:
    40 rdf:type schema:DefinedTerm
    41 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    42 https://doi.org/10.1007/bf00058655
    43 rdf:type schema:CreativeWork
    44 https://www.grid.ac/institutes/grid.418143.b schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...