Ontology type: sgo:Patent
2006-02-21T00:00
AUTHORSTim K. Keyes
ABSTRACTThe present invention is a method of allowing inclusion of more than one variable in a Classification and Regression Tree (CART) analysis. The method includes predicting y using p exploratory variables, where y is a multivariate, continuous response vector, describing a probability density function at “parent” and “child” nodes using a multivariate normal distribution, which is a function of y, and defining a split function where “child” node distributions are individualized, compared to the parent node. In one embodiment a system is configured to implement the multivariate CART analysis for predicting behavior in a non-performing loan portfolio. More... »
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3313",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"type": "DefinedTerm"
}
],
"author": [
{
"name": "Tim K. Keyes",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00058655",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002929950",
"https://doi.org/10.1007/bf00058655"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00058655",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002929950",
"https://doi.org/10.1007/bf00058655"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-02-21T00:00",
"description": "The present invention is a method of allowing inclusion of more than one variable in a Classification and Regression Tree (CART) analysis. The method includes predicting y using p exploratory variables, where y is a multivariate, continuous response vector, describing a probability density function at “parent” and “child” nodes using a multivariate normal distribution, which is a function of y, and defining a split function where “child” node distributions are individualized, compared to the parent node. In one embodiment a system is configured to implement the multivariate CART analysis for predicting behavior in a non-performing loan portfolio.
",
"id": "sg:patent.US-7003490-B1",
"keywords": [
"classification",
"regression tree",
"method",
"invention",
"inclusion",
"Classification and Regression Tree",
"exploratory",
"vector",
"probability density function",
"parent",
"child",
"node",
"normal distribution",
"split",
"distribution",
"embodiment",
"behavior",
"portfolio"
],
"name": "Multivariate responses using classification and regression trees systems and methods",
"recipient": [
{
"id": "https://www.grid.ac/institutes/grid.418143.b",
"type": "Organization"
}
],
"sameAs": [
"https://app.dimensions.ai/details/patent/US-7003490-B1"
],
"sdDataset": "patents",
"sdDatePublished": "2019-04-18T10:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03166.jsonl",
"type": "Patent"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-7003490-B1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-7003490-B1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-7003490-B1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-7003490-B1'
This table displays all metadata directly associated to this object as RDF triples.
44 TRIPLES
15 PREDICATES
33 URIs
26 LITERALS
2 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:patent.US-7003490-B1 | schema:about | anzsrc-for:3313 |
2 | ″ | schema:author | N7e640bce39f44b2fa5b5b42497994679 |
3 | ″ | schema:citation | sg:pub.10.1007/bf00058655 |
4 | ″ | schema:datePublished | 2006-02-21T00:00 |
5 | ″ | schema:description | <p num="p-0001">The present invention is a method of allowing inclusion of more than one variable in a Classification and Regression Tree (CART) analysis. The method includes predicting y using p exploratory variables, where y is a multivariate, continuous response vector, describing a probability density function at “parent” and “child” nodes using a multivariate normal distribution, which is a function of y, and defining a split function where “child” node distributions are individualized, compared to the parent node. In one embodiment a system is configured to implement the multivariate CART analysis for predicting behavior in a non-performing loan portfolio.</p> |
6 | ″ | schema:keywords | Classification and Regression Tree |
7 | ″ | ″ | behavior |
8 | ″ | ″ | child |
9 | ″ | ″ | classification |
10 | ″ | ″ | distribution |
11 | ″ | ″ | embodiment |
12 | ″ | ″ | exploratory |
13 | ″ | ″ | inclusion |
14 | ″ | ″ | invention |
15 | ″ | ″ | method |
16 | ″ | ″ | node |
17 | ″ | ″ | normal distribution |
18 | ″ | ″ | parent |
19 | ″ | ″ | portfolio |
20 | ″ | ″ | probability density function |
21 | ″ | ″ | regression tree |
22 | ″ | ″ | split |
23 | ″ | ″ | vector |
24 | ″ | schema:name | Multivariate responses using classification and regression trees systems and methods |
25 | ″ | schema:recipient | https://www.grid.ac/institutes/grid.418143.b |
26 | ″ | schema:sameAs | https://app.dimensions.ai/details/patent/US-7003490-B1 |
27 | ″ | schema:sdDatePublished | 2019-04-18T10:28 |
28 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
29 | ″ | schema:sdPublisher | Nb4c2d37c942d47dc91d098afe5551588 |
30 | ″ | sgo:license | sg:explorer/license/ |
31 | ″ | sgo:sdDataset | patents |
32 | ″ | rdf:type | sgo:Patent |
33 | N7e640bce39f44b2fa5b5b42497994679 | rdf:first | Nff5bdb09ec454d0bbadff665fbf08b73 |
34 | ″ | rdf:rest | rdf:nil |
35 | Nb4c2d37c942d47dc91d098afe5551588 | schema:name | Springer Nature - SN SciGraph project |
36 | ″ | rdf:type | schema:Organization |
37 | Nff5bdb09ec454d0bbadff665fbf08b73 | schema:name | Tim K. Keyes |
38 | ″ | rdf:type | schema:Person |
39 | anzsrc-for:3313 | schema:inDefinedTermSet | anzsrc-for: |
40 | ″ | rdf:type | schema:DefinedTerm |
41 | sg:pub.10.1007/bf00058655 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002929950 |
42 | ″ | ″ | https://doi.org/10.1007/bf00058655 |
43 | ″ | rdf:type | schema:CreativeWork |
44 | https://www.grid.ac/institutes/grid.418143.b | ″ | schema:Organization |