Quantum bit with a multi-terminal junction and loop with a phase shift


Ontology type: sgo:Patent     


Patent Info

DATE

2006-01-17T00:00

AUTHORS

Mohammad H. S. Amin , Timothy Duty , Alexander Omelyanchouk , Geordie Rose , Alexandre Zagoskin , Alexandre Blais

ABSTRACT

A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing. Further, qubits as described above can form arrays of qubits for performing controlled quantum computing calculations. In one example, an array of qubits can be utilized as a random number generator. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2389", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Mohammad H. S. Amin", 
        "type": "Person"
      }, 
      {
        "name": "Timothy Duty", 
        "type": "Person"
      }, 
      {
        "name": "Alexander Omelyanchouk", 
        "type": "Person"
      }, 
      {
        "name": "Geordie Rose", 
        "type": "Person"
      }, 
      {
        "name": "Alexandre Zagoskin", 
        "type": "Person"
      }, 
      {
        "name": "Alexandre Blais", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-4526(94)00299-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000471026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(00)01702-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014345183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015297414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5367.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017843919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.12904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018473962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.12904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018473962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5430.1036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020187346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021296790", 
          "https://doi.org/10.1038/30687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(98)00412-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022351187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(98)01122-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030756124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033024224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033024224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037822093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037822093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02650179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336282", 
          "https://doi.org/10.1007/bf02650179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(98)00010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043506347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176436", 
          "https://doi.org/10.1038/19464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176436", 
          "https://doi.org/10.1038/19464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(97)00348-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050245934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1998-00426-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052652990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/spmi.1999.0729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054493252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b006937j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056655047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.13135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.13135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5349.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062559315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539795293172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/tetsutohagane1955.86.7_431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085110773"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01-17T00:00", 
    "description": "

A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing. Further, qubits as described above can form arrays of qubits for performing controlled quantum computing calculations. In one example, an array of qubits can be utilized as a random number generator.

", "id": "sg:patent.US-6987282-B2", "keywords": [ "quantum bit", "terminal", "loop", "phase shift", "solid state", "qubits", "superconducting", "order parameter", "ground state", "supercurrent", "magnetic moment", "quantum state", "quantum", "transport", "operation", "applied magnetic field", "read-out", "direct measurement", "single electron transistor", "array", "calculation", "random number generator" ], "name": "Quantum bit with a multi-terminal junction and loop with a phase shift", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.421761.7", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-6987282-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:28", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03165.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-6987282-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-6987282-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-6987282-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-6987282-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      15 PREDICATES      64 URIs      30 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-6987282-B2 schema:about anzsrc-for:2389
2 schema:author Ne35128a1e64d4fbea3cd1835c7bdbd7a
3 schema:citation sg:pub.10.1007/bf02650179
4 sg:pub.10.1038/19464
5 sg:pub.10.1038/19718
6 sg:pub.10.1038/30687
7 https://doi.org/10.1006/spmi.1999.0729
8 https://doi.org/10.1016/0921-4526(94)00299-b
9 https://doi.org/10.1016/s0375-9601(98)00010-3
10 https://doi.org/10.1016/s0921-4526(97)00348-7
11 https://doi.org/10.1016/s0921-4526(98)00412-8
12 https://doi.org/10.1016/s0921-4526(98)01122-3
13 https://doi.org/10.1016/s0921-4534(00)01702-0
14 https://doi.org/10.1039/b006937j
15 https://doi.org/10.1063/1.123258
16 https://doi.org/10.1063/1.125627
17 https://doi.org/10.1103/physrevb.51.12904
18 https://doi.org/10.1103/physrevb.55.8457
19 https://doi.org/10.1103/physrevb.60.13135
20 https://doi.org/10.1103/physrevb.62.648
21 https://doi.org/10.1103/physrevlett.72.2458
22 https://doi.org/10.1103/physrevlett.74.797
23 https://doi.org/10.1103/physrevlett.85.5452
24 https://doi.org/10.1103/revmodphys.73.357
25 https://doi.org/10.1126/science.279.5349.342
26 https://doi.org/10.1126/science.280.5367.1238
27 https://doi.org/10.1126/science.285.5430.1036
28 https://doi.org/10.1137/s0097539795293172
29 https://doi.org/10.1209/epl/i1998-00426-2
30 https://doi.org/10.2355/tetsutohagane1955.86.7_431
31 schema:datePublished 2006-01-17T00:00
32 schema:description <p num="p-0001">A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing. Further, qubits as described above can form arrays of qubits for performing controlled quantum computing calculations. In one example, an array of qubits can be utilized as a random number generator.</p>
33 schema:keywords applied magnetic field
34 array
35 calculation
36 direct measurement
37 ground state
38 loop
39 magnetic moment
40 operation
41 order parameter
42 phase shift
43 quantum
44 quantum bit
45 quantum state
46 qubits
47 random number generator
48 read-out
49 single electron transistor
50 solid state
51 superconducting
52 supercurrent
53 terminal
54 transport
55 schema:name Quantum bit with a multi-terminal junction and loop with a phase shift
56 schema:recipient https://www.grid.ac/institutes/grid.421761.7
57 schema:sameAs https://app.dimensions.ai/details/patent/US-6987282-B2
58 schema:sdDatePublished 2019-04-18T10:28
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nfda4876c9a87475f870c1ca674e2c527
61 sgo:license sg:explorer/license/
62 sgo:sdDataset patents
63 rdf:type sgo:Patent
64 N378d5a17dbe7427596ec2e36a18b88cc rdf:first N8418abd299b640c2b8402e603f4decd6
65 rdf:rest N9d3eec5de69349db997f6fa68bc6cdf4
66 N47a3f0ebab1147a4a5b16558b318d3a5 schema:name Geordie Rose
67 rdf:type schema:Person
68 N4e1bafee1fda49889ac7432b4a48b6bc rdf:first Ne68e831427e04b4c89372338ac7ef950
69 rdf:rest rdf:nil
70 N8418abd299b640c2b8402e603f4decd6 schema:name Timothy Duty
71 rdf:type schema:Person
72 N92ba9f5e0e1e4d70822516d2f8fb4741 schema:name Alexander Omelyanchouk
73 rdf:type schema:Person
74 N9951121cbf014811bb31bdcc4e4f5615 rdf:first N47a3f0ebab1147a4a5b16558b318d3a5
75 rdf:rest Nc3a9012d60994e059084df356d3863e5
76 N9d1da441914d47579341ded507dfc85c schema:name Alexandre Zagoskin
77 rdf:type schema:Person
78 N9d3eec5de69349db997f6fa68bc6cdf4 rdf:first N92ba9f5e0e1e4d70822516d2f8fb4741
79 rdf:rest N9951121cbf014811bb31bdcc4e4f5615
80 Nc3a9012d60994e059084df356d3863e5 rdf:first N9d1da441914d47579341ded507dfc85c
81 rdf:rest N4e1bafee1fda49889ac7432b4a48b6bc
82 Ne35128a1e64d4fbea3cd1835c7bdbd7a rdf:first Ne53f3c74af1944febf1d9535293d4424
83 rdf:rest N378d5a17dbe7427596ec2e36a18b88cc
84 Ne53f3c74af1944febf1d9535293d4424 schema:name Mohammad H. S. Amin
85 rdf:type schema:Person
86 Ne68e831427e04b4c89372338ac7ef950 schema:name Alexandre Blais
87 rdf:type schema:Person
88 Nfda4876c9a87475f870c1ca674e2c527 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 anzsrc-for:2389 schema:inDefinedTermSet anzsrc-for:
91 rdf:type schema:DefinedTerm
92 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
93 https://doi.org/10.1007/bf02650179
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/19464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046176436
96 https://doi.org/10.1038/19464
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/19718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792474
99 https://doi.org/10.1038/19718
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/30687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021296790
102 https://doi.org/10.1038/30687
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1006/spmi.1999.0729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054493252
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0921-4526(94)00299-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1000471026
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0375-9601(98)00010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043506347
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0921-4526(97)00348-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050245934
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0921-4526(98)00412-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022351187
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0921-4526(98)01122-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030756124
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0921-4534(00)01702-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014345183
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1039/b006937j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056655047
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.123258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015297414
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.125627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689742
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.51.12904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018473962
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.55.8457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584814
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.60.13135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593369
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.62.648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597854
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.72.2458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808823
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.74.797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811419
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.85.5452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037822093
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/revmodphys.73.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033024224
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1126/science.279.5349.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559315
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1126/science.280.5367.1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017843919
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1126/science.285.5430.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020187346
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/s0097539795293172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880065
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1209/epl/i1998-00426-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052652990
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2355/tetsutohagane1955.86.7_431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085110773
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.421761.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...