Quantum bit with a multi-terminal junction and loop with a phase shift


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Mohammad H. S. Amin , Timothy Duty , Alexander Omelyanchouk , Geordie Rose , Alexandre Zagoskin , Alexandre Blais

ABSTRACT

A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing. Further, qubits as described above can form arrays of qubits for performing controlled quantum computing calculations. In one example, an array of qubits can be utilized as a random number generator. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2389", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Mohammad H. S. Amin", 
        "type": "Person"
      }, 
      {
        "name": "Timothy Duty", 
        "type": "Person"
      }, 
      {
        "name": "Alexander Omelyanchouk", 
        "type": "Person"
      }, 
      {
        "name": "Geordie Rose", 
        "type": "Person"
      }, 
      {
        "name": "Alexandre Zagoskin", 
        "type": "Person"
      }, 
      {
        "name": "Alexandre Blais", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-4526(94)00299-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000471026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015297414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5367.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017843919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.12904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018473962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5430.1036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020187346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021296790", 
          "https://doi.org/10.1038/30687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(98)00412-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022351187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(98)01122-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030756124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.73.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033024224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037822093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02650179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336282", 
          "https://doi.org/10.1007/bf02650179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02650179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336282", 
          "https://doi.org/10.1007/bf02650179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(98)00010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043506347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176436", 
          "https://doi.org/10.1038/19464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(97)00348-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050245934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/spmi.1999.0729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054493252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b006937j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056655047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.13135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5349.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062559315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539795293172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/tetsutohagane1955.86.7_431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085110773"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing. Further, qubits as described above can form arrays of qubits for performing controlled quantum computing calculations. In one example, an array of qubits can be utilized as a random number generator.

", "id": "sg:patent.US-6919579-B2", "keywords": [ "quantum bit", "terminal", "loop", "phase shift", "solid state", "qubits", "superconducting", "order parameter", "ground state", "supercurrent", "magnetic moment", "quantum state", "quantum", "transport", "operation", "applied magnetic field", "read-out", "direct measurement", "single electron transistor", "array", "calculation", "random number generator" ], "name": "Quantum bit with a multi-terminal junction and loop with a phase shift", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.421761.7", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-6919579-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:32", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_1a463c9e.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-6919579-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-6919579-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-6919579-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-6919579-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      14 PREDICATES      61 URIs      29 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-6919579-B2 schema:about anzsrc-for:2389
2 schema:author Nb77f72d81aff49cab2233207d654f802
3 schema:citation sg:pub.10.1007/bf02650179
4 sg:pub.10.1038/19464
5 sg:pub.10.1038/19718
6 sg:pub.10.1038/30687
7 https://doi.org/10.1006/spmi.1999.0729
8 https://doi.org/10.1016/0921-4526(94)00299-b
9 https://doi.org/10.1016/s0375-9601(98)00010-3
10 https://doi.org/10.1016/s0921-4526(97)00348-7
11 https://doi.org/10.1016/s0921-4526(98)00412-8
12 https://doi.org/10.1016/s0921-4526(98)01122-3
13 https://doi.org/10.1039/b006937j
14 https://doi.org/10.1063/1.123258
15 https://doi.org/10.1063/1.125627
16 https://doi.org/10.1103/physrevb.51.12904
17 https://doi.org/10.1103/physrevb.55.8457
18 https://doi.org/10.1103/physrevb.60.13135
19 https://doi.org/10.1103/physrevb.62.648
20 https://doi.org/10.1103/physrevlett.72.2458
21 https://doi.org/10.1103/physrevlett.74.797
22 https://doi.org/10.1103/physrevlett.85.5452
23 https://doi.org/10.1103/revmodphys.73.357
24 https://doi.org/10.1126/science.279.5349.342
25 https://doi.org/10.1126/science.280.5367.1238
26 https://doi.org/10.1126/science.285.5430.1036
27 https://doi.org/10.1137/s0097539795293172
28 https://doi.org/10.2355/tetsutohagane1955.86.7_431
29 schema:description <p num="p-0001">A solid-state quantum computing qubit includes a multi-terminal junction coupled to a superconducting loop where the superconducting loop introduces a phase shift to the superconducting order parameter. The ground state of the supercurrent in the superconducting loop and multi-terminal junction is doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents in the superconducting loop create qubits for quantum computing. The quantum states can be initialized by applying transport currents to the external leads. Arbitrary single qubit operations may be performed by varying the transport current and/or an externally applied magnetic field. Read-out may be performed using direct measurement of the magnetic moment of the qubit state, or alternatively, radio-frequency single electron transistor electrometers can be used as read-out devices when determining a result of the quantum computing. Further, qubits as described above can form arrays of qubits for performing controlled quantum computing calculations. In one example, an array of qubits can be utilized as a random number generator.</p>
30 schema:keywords applied magnetic field
31 array
32 calculation
33 direct measurement
34 ground state
35 loop
36 magnetic moment
37 operation
38 order parameter
39 phase shift
40 quantum
41 quantum bit
42 quantum state
43 qubits
44 random number generator
45 read-out
46 single electron transistor
47 solid state
48 superconducting
49 supercurrent
50 terminal
51 transport
52 schema:name Quantum bit with a multi-terminal junction and loop with a phase shift
53 schema:recipient https://www.grid.ac/institutes/grid.421761.7
54 schema:sameAs https://app.dimensions.ai/details/patent/US-6919579-B2
55 schema:sdDatePublished 2019-03-07T15:32
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nef71d9091ca546f98afb7a6931ba34e7
58 sgo:license sg:explorer/license/
59 sgo:sdDataset patents
60 rdf:type sgo:Patent
61 N0c15ba0d77d647738e3d5f8eedc51200 rdf:first Nb632751c66d54b93973e6e37bf07b895
62 rdf:rest rdf:nil
63 N40f195b913f24f0b87f37be0531d478e rdf:first N451860b9ade0432591f072ab363b5112
64 rdf:rest N65dc082a56c54782a19e05ac8f88878c
65 N451860b9ade0432591f072ab363b5112 schema:name Alexander Omelyanchouk
66 rdf:type schema:Person
67 N56137a122f3946c194b01ed3ffc1c083 schema:name Timothy Duty
68 rdf:type schema:Person
69 N65dc082a56c54782a19e05ac8f88878c rdf:first N9ac130ebde3a44d2a9d96456c84302e4
70 rdf:rest N86a0e8e96aee4bf6a13e819669044d58
71 N73348863111a4fb88d39e4f3c25730f7 schema:name Mohammad H. S. Amin
72 rdf:type schema:Person
73 N86a0e8e96aee4bf6a13e819669044d58 rdf:first Nee421de9389e412ea2048dd9008f2f43
74 rdf:rest N0c15ba0d77d647738e3d5f8eedc51200
75 N9ac130ebde3a44d2a9d96456c84302e4 schema:name Geordie Rose
76 rdf:type schema:Person
77 Nae66c1df0cfd4b238538daeb1ac62e9c rdf:first N56137a122f3946c194b01ed3ffc1c083
78 rdf:rest N40f195b913f24f0b87f37be0531d478e
79 Nb632751c66d54b93973e6e37bf07b895 schema:name Alexandre Blais
80 rdf:type schema:Person
81 Nb77f72d81aff49cab2233207d654f802 rdf:first N73348863111a4fb88d39e4f3c25730f7
82 rdf:rest Nae66c1df0cfd4b238538daeb1ac62e9c
83 Nee421de9389e412ea2048dd9008f2f43 schema:name Alexandre Zagoskin
84 rdf:type schema:Person
85 Nef71d9091ca546f98afb7a6931ba34e7 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:2389 schema:inDefinedTermSet anzsrc-for:
88 rdf:type schema:DefinedTerm
89 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
90 https://doi.org/10.1007/bf02650179
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/19464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046176436
93 https://doi.org/10.1038/19464
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/19718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792474
96 https://doi.org/10.1038/19718
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/30687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021296790
99 https://doi.org/10.1038/30687
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1006/spmi.1999.0729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054493252
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0921-4526(94)00299-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1000471026
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0375-9601(98)00010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043506347
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0921-4526(97)00348-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050245934
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0921-4526(98)00412-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022351187
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0921-4526(98)01122-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030756124
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1039/b006937j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056655047
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.123258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015297414
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.125627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689742
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.51.12904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018473962
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.55.8457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584814
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.60.13135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593369
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.62.648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597854
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.72.2458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808823
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.74.797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811419
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.85.5452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037822093
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/revmodphys.73.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033024224
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1126/science.279.5349.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559315
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.280.5367.1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017843919
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.285.5430.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020187346
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/s0097539795293172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880065
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2355/tetsutohagane1955.86.7_431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085110773
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.421761.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...