Micro-fluidic valve with a colloidal particle element


Ontology type: sgo:Patent     


Patent Info

DATE

2004-10-12T00:00

AUTHORS

David W. M. Marr , Tieying Gong , John Oakey , Alexander V. Terray

ABSTRACT

The present invention relates to the use colloidal particles to realize photonic and microfluidic devices. In particular embodiments, colloidal particles are used to realize microfluidic a two-way valve, three-way valve, check valve, three-dimensional valve, peristalsis pump, rotary pump, vane pump, and two-lobe gear pump. In certain embodiments, actuation of an active element in the microfluidic structure is accomplished by electrophoresis, the use of an optical trap or “tweezer”, or the application of an electric field or magnetic field. In other embodiments, the application of an electrical field to colloidal particles that are substantially constrained to two dimensional movement is used to realize wave guides, filters and switches for optical signals. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2421", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "David W. M. Marr", 
        "type": "Person"
      }, 
      {
        "name": "Tieying Gong", 
        "type": "Person"
      }, 
      {
        "name": "John Oakey", 
        "type": "Person"
      }, 
      {
        "name": "Alexander V. Terray", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/1521-4095(20020503)14:9<658::aid-adma658>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013455570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0294(99)00007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013721242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35007047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343153", 
          "https://doi.org/10.1038/35007047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35007047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343153", 
          "https://doi.org/10.1038/35007047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0960-1317/4/4/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032646285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35003530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037904495", 
          "https://doi.org/10.1038/35003530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35003530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037904495", 
          "https://doi.org/10.1038/35003530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35089130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938448", 
          "https://doi.org/10.1038/35089130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35089130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938448", 
          "https://doi.org/10.1038/35089130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5463.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053301497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la960183w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056167469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la960183w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056167469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057690284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1367010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057699459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.5746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060576397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.5746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060576397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.3113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5262.706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552909"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10-12T00:00", 
    "description": "

The present invention relates to the use colloidal particles to realize photonic and microfluidic devices. In particular embodiments, colloidal particles are used to realize microfluidic a two-way valve, three-way valve, check valve, three-dimensional valve, peristalsis pump, rotary pump, vane pump, and two-lobe gear pump. In certain embodiments, actuation of an active element in the microfluidic structure is accomplished by electrophoresis, the use of an optical trap or “tweezer”, or the application of an electric field or magnetic field. In other embodiments, the application of an electrical field to colloidal particles that are substantially constrained to two dimensional movement is used to realize wave guides, filters and switches for optical signals.

", "id": "sg:patent.US-6802489-B2", "keywords": [ "micro-fluidics", "colloidal particle", "invention", "microfluidics device", "embodiment", "two-way", "valve", "check", "peristalsis", "vane", "lobe", "actuation", "active element", "microfluidics", "electrophoresis", "Optical Tweezer", "tweezer", "electric field", "magnetic field", "electrical field", "movement", "wave guide", "filter", "optical signal" ], "name": "Micro-fluidic valve with a colloidal particle element", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.254549.b", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-6802489-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:28", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03147.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-6802489-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-6802489-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-6802489-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-6802489-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      15 PREDICATES      53 URIs      32 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-6802489-B2 schema:about anzsrc-for:2421
2 schema:author N0e866e3004e04e9094520a55de9b4828
3 schema:citation sg:pub.10.1038/35003530
4 sg:pub.10.1038/35007047
5 sg:pub.10.1038/35089130
6 https://doi.org/10.1002/1521-4095(20020503)14:9<658::aid-adma658>3.0.co;2-3
7 https://doi.org/10.1016/s1359-0294(99)00007-2
8 https://doi.org/10.1021/la960183w
9 https://doi.org/10.1063/1.126175
10 https://doi.org/10.1063/1.1367010
11 https://doi.org/10.1088/0960-1317/4/4/010
12 https://doi.org/10.1103/physrevb.51.5746
13 https://doi.org/10.1103/physrevlett.51.2306
14 https://doi.org/10.1103/physrevlett.73.3113
15 https://doi.org/10.1103/physrevlett.78.3860
16 https://doi.org/10.1126/science.272.5262.706
17 https://doi.org/10.1126/science.288.5463.113
18 schema:datePublished 2004-10-12T00:00
19 schema:description <p>The present invention relates to the use colloidal particles to realize photonic and microfluidic devices. In particular embodiments, colloidal particles are used to realize microfluidic a two-way valve, three-way valve, check valve, three-dimensional valve, peristalsis pump, rotary pump, vane pump, and two-lobe gear pump. In certain embodiments, actuation of an active element in the microfluidic structure is accomplished by electrophoresis, the use of an optical trap or &#8220;tweezer&#8221;, or the application of an electric field or magnetic field. In other embodiments, the application of an electrical field to colloidal particles that are substantially constrained to two dimensional movement is used to realize wave guides, filters and switches for optical signals.</p>
20 schema:keywords Optical Tweezer
21 active element
22 actuation
23 check
24 colloidal particle
25 electric field
26 electrical field
27 electrophoresis
28 embodiment
29 filter
30 invention
31 lobe
32 magnetic field
33 micro-fluidics
34 microfluidics
35 microfluidics device
36 movement
37 optical signal
38 peristalsis
39 tweezer
40 two-way
41 valve
42 vane
43 wave guide
44 schema:name Micro-fluidic valve with a colloidal particle element
45 schema:recipient https://www.grid.ac/institutes/grid.254549.b
46 schema:sameAs https://app.dimensions.ai/details/patent/US-6802489-B2
47 schema:sdDatePublished 2019-04-18T10:28
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N3a7cc33c66ba4dc596c5f2d93faae23c
50 sgo:license sg:explorer/license/
51 sgo:sdDataset patents
52 rdf:type sgo:Patent
53 N0e866e3004e04e9094520a55de9b4828 rdf:first N4b65fc10a5114a66a38ec05b84f767f3
54 rdf:rest N4786853a43034b77901b9bdbcb2d6b52
55 N1446e36d9b3e48e4860d9390f0785081 rdf:first Ne71b1f5a376b4552ad4a9f01976c23b0
56 rdf:rest Ne3f219e702ab43af9f18ce122feeb317
57 N3a7cc33c66ba4dc596c5f2d93faae23c schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N44b630b969b3470ea3b537270c5e6bab schema:name Alexander V. Terray
60 rdf:type schema:Person
61 N4786853a43034b77901b9bdbcb2d6b52 rdf:first Na231485d2a9441a1be20e70e05661b41
62 rdf:rest N1446e36d9b3e48e4860d9390f0785081
63 N4b65fc10a5114a66a38ec05b84f767f3 schema:name David W. M. Marr
64 rdf:type schema:Person
65 Na231485d2a9441a1be20e70e05661b41 schema:name Tieying Gong
66 rdf:type schema:Person
67 Ne3f219e702ab43af9f18ce122feeb317 rdf:first N44b630b969b3470ea3b537270c5e6bab
68 rdf:rest rdf:nil
69 Ne71b1f5a376b4552ad4a9f01976c23b0 schema:name John Oakey
70 rdf:type schema:Person
71 anzsrc-for:2421 schema:inDefinedTermSet anzsrc-for:
72 rdf:type schema:DefinedTerm
73 sg:pub.10.1038/35003530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037904495
74 https://doi.org/10.1038/35003530
75 rdf:type schema:CreativeWork
76 sg:pub.10.1038/35007047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343153
77 https://doi.org/10.1038/35007047
78 rdf:type schema:CreativeWork
79 sg:pub.10.1038/35089130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041938448
80 https://doi.org/10.1038/35089130
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/1521-4095(20020503)14:9<658::aid-adma658>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013455570
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s1359-0294(99)00007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013721242
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1021/la960183w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056167469
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1063/1.126175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690284
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1063/1.1367010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057699459
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1088/0960-1317/4/4/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032646285
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevb.51.5746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060576397
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.51.2306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789368
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.73.3113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810001
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.78.3860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815255
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1126/science.272.5262.706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552909
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1126/science.288.5463.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053301497
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.254549.b schema:Organization
 




Preview window. Press ESC to close (or click here)


...